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Preface: 
Towards a New Computing Paradigm 

With the advent of computing, we are fast entering a new era of discovery 
and opportunity. In business, market researchers will be able to predict the po- 
tential market share of a new product on-the-fly by synthesizing news reports, 
competitor analysis, and large-scale simulations of consumer behavior, In life 
and material sciences, specially engineered amorphous computational parti- 
cles will be able to perform optimal search, whether they are bio-robot agents 
to kill cancer cells inside human bodies or smart paints to spread evenly over 
and fill cracks on rugged surfaces. In environmental sciences, surveillance ap- 
plications will be able to deploy wireless, mobile sensor networks to monitor 
wild vegetation and route the tracking measurements of moving objects back 
to home stations efficiently and safely. In robotics, teams of rescue or Mars 
exploratory robots will be able to coordinate their manipulation tasks in order 
to collectively accomplish, their missions, while making the best use of their 
capabilities and resources. 

All the above examples exhibit a common characteristic, that is, the task, 
of computing is searnlessly carried out in a variety of physical embodiments. 
There is no single multi-purpose or dedicated machine that can manage to 
accomplish a job of this nature. The key to success in such applications lies 
in a large-scale deployment of computational agents capable of autonomously 
making their localized decisions and achieving their collective goals. 

We are now experiencing a world in which the traditional sense of com- 
puters is getting obsolete. It calls for a more powerful, intelligent computing 
paradigm for handling large-scale data exploration and information process- 
ing. We are in a critical moment to develop such a new computing paradigm in 
order to invent new technologies, to operate new business models, to discover 



xxiv AUTONOMY ORIENTED COMPUTING 

new scientific laws, and even to better understand the universe in which we 
live. 

In human civilizations, science and technology develop as a result of our 
curiosity to uncover such fundamental puzzles as who we are, how the uni- 
verse evolves, and how nature works, multiplied by our desires to tackle such 
practical issues as how to overcome our limitations, how to make the best use 
of our resources, and how to sustain our well-being. 

This book is a testimony of how we embrace new scientific and techno- 
logical development in the world of computing. We specifically examine the 
metaphors of autonomy as offered by nature and identify their roles in address- 
ing our practical computing needs. In so doing, we witness the emergence of a 
new computing paradigm, called autonomy oriented computing (AOC). 

Autonomy Oriented Computing 
While existing methods for modeling autonomy are successful to some ex- 
tent, a generic model or framework for handling problems in complex sys- 
tems, such as ecological, social, economical, mathematical, physical, and nat- 
ural systems, effectively is still absent. Autonomy oriented computing (AOC) 
unifies the methodologies for effective analysis, modeling, and simulation of 
the characteristics of complex systems. In so doing, AOC offers a new comput- 
ing paradigm that makes use of autonomous entities in solving computational 
problems and in modeling complex systems. This new paradigm can be clas- 
sified and studied according to (1) how much human involvement is necessary 
and (2) how sophisticated a model of computational autonomy is, as follows: 

AOC-by-fabrication: Earlier examples with this approach are entity-based 
image feature extraction, artificial creature animation, and ant colony opti- 
mization. Lifelike behavior and emergent intelligence are exhibited in such 
systems by means of fabricating and operating autonomous entities. 

AOC-by-prototyping: This approach attempts to understand self-organized 
complex phenomena by modeling and simulating autonomous entities. Ex- 
amples include studies on Web regularities based on self-adaptive informa- 
tion foraging entities. 

AOC-by-self-discovery: This approach automatically fine-tunes the param- 
eters of autonomous behaviors in solving and modeling certain problems. 
A typical example is using autonomous entities to adaptively solve a large- 
scale, distributed optimization problem in real time. 

As compared to other paradigms, such as centralized computation and top- 
down systems modeling, AOC has been found to be extremely appealing in 
the following aspects: 

To capture the essence of autonomy in natural and artificial systems; 
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To solve computationally hard problems, e.g., large-scale computation, dis- 
tributed constraint satisfaction, and decentralized optimization, that are dy- 
namically evolving and highly complex in terms of interaction and dimen- 
sionality; 

To characterize complex phenomena or emergent behavior in natural and 
artificial systems that involve a large number of self-organizing, interacting 
entities; 

To discover laws and mechanisms underlying complex phenomena or emer- 
gent behaviors. 

Early Work on AOC 
The ideas, formulations, and case studies that we introduce in this book have 
resulted largely from the research undertaken in the AOC Research Lab of 
Hong Kong Baptist University under the direction of Professor Jiming Liu. In 
what follows, we highlight some of the earlier activities in our journey towards 
the development of AOC as a new paradigm for computing. 

Our first systematic study on AOC originated in 1996~. As originally re- 
ferred to Autonomy Oriented computation, the notion of AOC first appeared 
in the book of Autonomous Agents and Multi-Agent Systems (AAMAS)~. Later, 
as an effort to promote the AOC research, the First International Workshop on 
AOC was organized and held in Montreal in 2001~. 

Earlier projects at the AOC Lab have been trying to explore and demonstrate 
the effective use of AOC in a variety of domains, covering constraint satisfac- 

 he very first reported formulation of cellular automaton for image feature extraction can be found in J. 
Liu, Y. Y. Tang, and Y. Cao. An Evolutionary Autonomous Agents Approach to Image Feature Extraction. 
IEEE Transactions on Evolutionary Computation, 1(2):141-158, 1997. J .  Liu, H. Zhou, and Y. Y. Tang. 
Evolutionary Cellular Automata for Emergent Image Features. In Shun-ichi Amari et al., editors, Progress 
in Neural Information Processing, Springer, pages 458-463, 1996. 
2 ~ .  Liu. Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-organization, and 
Adaptive Computation, World Scientific Publishing, 2001. 
3 ~ t  this workshop, a comprehensive introduction to this new research field, as the further development of 
AAMAS, was given; See J. Liu, K. C. Tsui, and J. Wu. Introducing Autonomy Oriented Computation 
(AOC). In Proceedings of the First International Workshop on Autonomy Oriented Computation (AOC 
2001), Montreal, May 29,2001, pages 1-1 1. 
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tion problem solving4, mathematical programming5, optimization6, image pro- 
cessing7, and data mining8. Since 2000, projects have been launched to study 
the AOC approaches to characterizing (i.e., modeling and explaining) observed 
or desired regularities in real-world complex systems, e.g., self-organized Web 
regularities and HIV infection dynamics, as a white-box alternative to the tra- 
ditional top-down or statistical modeling9. 

These AOC projects differ from traditional A1 and agent studies in that here 
we pay special attention to the role of self-organization, a powerful methodol- 
ogy as demonstrated in nature and well suited to the problems that involve 
large-scale, distributed, locally interacting, and sometimes rational entities. 
This very emphasis on self-organization was also apparent in the earlier work 
on collective problem solving with a group of autonomous robots1° and behav- 
ioral self-organization1' . 

Recently, we have started to explore a new frontier, the AOC applications 
to the Internet. This work has dealt with the theories and techniques essential 

4 ~ h e  first experiment that demonstrated the idea of cellular automaton-like computational entities in solving 
constraint satisfaction problenls (CSP) can be found in J. Han, J. Liu, and Q. Cai. From ALife Agents to 
a Kingdom of N Queens. In J. Liu and N. Zhong, editors, Intelligent Agent Technology: Systems, Method- 
ologies, and Tools, World Scientific Publishing, pages 110-120, 1999. Our recent work has extended the 
previous work by developing formal notions of computational complexity for AOC in distributed problem 
solving; See, X. Jin and J. Liu. Agent Networks: Topological and Clustering Characterization. In N. Zhong 
and J. Liu, editors, Intelligent Technologies for Information Analysis, Springer, pages 285-304, 2004. 
5 ~ .  Liu and J. Yin. Multi-Agent Integer Programming. In Lecture Notes in Computer Science, Vol. 1983, 
Springer, pages 301-307,2000. 
6~ successfully demonstrated application in optimization is to solve benchmark functional optimization 
problems with promising results; See, K. C. Tsui and J. Liu. Evolutionary Diffusion Optimization, Part I: 
Description of the Algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC 
2002). Honolulu, Hawaii, May 12-17, 2002. K. C. Tsui and J. Liu. Evolutionary Diffusion Optimization, 
Part 11: Performance Assessment. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC 
2002), Honolulu, Hawaii, May 12-17,2002. 
7 ~ .  Liu and Y. Zhao. On Adaptive Agentlets for Distributed Divide-and-Conquer: A Dynamical Systems 
Approach. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 32(2):214- 
227, 2002. 
'J. Liu. Autonomy Oriented Computing (AOC): A New Paradigm in Data Mining and Modeling, Invited 
Talk, Workshop on Data Mining and Modeling, June 27-28,2002, Hong Kong. 
9 ~ h e  results were first reported in J. Liu and S. Zhang. Unveiling the Origins of Internet Use Patterns. In 
Proceedings of INET2001, The Internet Global Summit, Stockholmsmssan, Stockholm, Sweden, June 5-8, 
2001. 
'OJ. Liu and J. Wu. Multi-Agent Robotic Systems, CRC Press, 2001. J. Liu and J. Wu. Evolutionary 
Group Robots for Collective World Modeling. In Proceedings of the Third International Conference on 
Autonomous Agents (AGENTS'99). Seattle, WA, May 1-5, 1999. J. Liu. Self-organization, Evolution, and 
Learning, Invited Lectures by Leading Researchers, Pacific Rim International Workshop on Multi-Agents 
(PRIMA 2002) Summer School on Agents and Multi-Agent Systems, Aug. 17,2002, Tokyo, Japan. 
"J. Liu, H. Qin, Y. Y. Tang, and Y. Wu. Adaptation and Learning in Animated Creatures. In Proceedings of 
the First International Conference on Autonomous Agents (AGENTS'97), Marina del Rey, California, Feb. 
5-8, 1997. J. Liu and H. Qin. Behavioral Self-organization in Synthetic Agents. Autonomous Agents and 
Multi-Agent Systems, Kluwer Academic Publishers, 5(4):397-428, 2002. 
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for the next paradigm shift in the World Wide Web, i.e., the Wisdom web12. 
It covers a number of key Web Intelligence (WI) capabilities, such as (1) au- 
tonomous service planning; (2) distributed resource discovery and optimiza- 
tion13; (3) Problem Solver Markup Language (PSML); (4) social network evo- 
lution; (5) ubiquitous intelligence. 

Overview of the Book 
This book is intended to highlight the important theoretical and practical issues 
in AOC, with both methodologies and experimental cases studies. 

It can serve as a comprehensive reference book for researchers, scientists, 
engineers, and professionals in the fields of computer science, autonomous sys- 
tems, robotics, artificial life, biology, psychology, ecology, physics, business, 
economics, and complex adaptive systems, among others. 

It can also be used as a text or supplementary book for graduate or under- 
graduate students in a broad range of disciplines, such as: 

Agent-Based Problem Solving; 

Amorphous Computing; 

Artificial Intelligence; 

Autonomous Agents and Multi-Agent Systems; 

Complex Adaptive Systems; 

a Computational Biology; 

a Computational Finance and Economics; 

a Data Fusion and Exploration; 

Emergent Computation; 

Image Processing and Computer Vision; 

Intelligent Systems; 

"5. Liu. Web Intelligence (WI): What Makes Wisdom Web? In Proceedings of the Eighteenth International 
Joint Conference on Artificial Intelligence (IJCAI-03). Acapulco, Mexico, Aug. 9-15, 2003, pages 1596- 
1601, Morgan Kaufmann Publishers. J. Liu. Web Intelligence (WI): Some Research Challenges, Invited 
Talk, the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), Aug. 9-15, 2003, 
Acapulco, Mexico. 
130ne project addressed the issue of resource discovery and allocation; See, Y. Wang and J. Liu. Macro- 
scopic Model of Agent Based Load Balancing on Grids. In Proceedings of the Second International Joint 
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, July 
14-18,2003. K. C. Tsui, J. Liu, and M. J. Kaiser. Self-organized Load Balancing in Proxy Servers. Journal 
of Intelligent Information Systems, Kluwer Academic Publishers, 20(1):31-50, 2003. 
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w Modeling and Simulation; 

Nature Inspired Computation; 

w Operations Research; 

rn Optimization; 

Programming Paradigms; 

w Robotics and Automation; 

= Self-organization. 

The book contains two parts. In Part I, Fundamentals, we describe the ba- 
sic concepts, characteristics, and approaches of AOC. We further discuss the 
important design and engineering issues in developing an AOC system, and 
present a formal framework for AOC modeling. In Part 11, AOC in Depth, 
we provide detailed methodologies and case studies on how to implement and 
evaluate AOC in problem solving (i.e., Chapter 5, AOC in Constraint Satisfac- 
tion and Chapter 7, AOC in Optimization) as well as in complex systems mod- 
eling (i.e., Chapter 6, AOC in Complex Systems Modeling). In these chapters, 
we start with introductory or survey sections on practical problems and appli- 
cations that call for the respective AOC approach(es) and specific formulations. 
In Chapter 8, Challenges and Opportunities, we revisit the important ingredi- 
ents in the AOC paradigm and outline some directions for future research and 
development. 

The book contains numerous illustrative examples and experimental case 
studies. In addition, it also includes exercises at the end of each chapter. These 
materials further consolidate the theories and methodologies through: 

Solving, proving, or testing some specific issues and properties, which are 
mentioned in the chapter; 

rn Application of certain methodologies, formulations, and algorithms de- 
scribed in the chapter to tackle specific problems or scenarios; 

w Development of new formulations and algorithms following the basic ideas 
and approaches presented; 

w Comparative studies to empirically appreciate the differences between a 
specific AOC method or approach and other conventional ones; 

w Philosophical and critical discussions; 

w Survey of some literature and hence identification of AOC research prob- 
lems in a new domain. 
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Moreover, we will make related electronic materials available on the Web for 
interested readers to download. These electronic materials include: source 
codes for some of the algorithms and case studies described in the book, pre- 
sentation slides, new problems or exercises, and project demos. Details can be 
found at http://www. comp. hkbu.edu. hk/.vjiming/. 

Whether you are interested in applying the AOC techniques introduced here 
to solve your specific problems or you are keen on further research in this 
exciting field, we hope that you will find this thorough and unified treatment 
of AOC useful and insightful. Enjoy! 

Hong Kong 
Fall 2004 

Jiming Liu 
Xiaolong Jin 

Kwok Ching Tsui 
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Part I 

FUNDAMENTALS 



Chapter 1 

From Autonomy to AOC 

1.1. Introduction 
Autonomy oriented computing (AOC) is a new bottom-up paradigm for 

problem solving and complex systems modeling. In this book, our goal is 
to substantiate this very statement and to demonstrate useful AOC methodolo- 
gies and applications. But, before we do so, we need to understand some of 
the most fundamental issues involved: What are the general characteristics of 
complex systems consisting of autonomous entities? What types of behavior 
can a single or a collection of autonomous entities exhibit or generate? How 
can we give a definition of autonomy based on the notion of behavior? In a 
bottom-up computing system, how can the property of autonomy be modeled 
and utilized? What types of problem is such a bottom-up computing paradigm 
indented to solve? How different is this AOC paradigm from other previous or 
current computing paradigms? 

In this chapter, we will try to answer each of the above questions. These 
answers will provide a general context for our later discussions on the AOC 
formalisms, methodologies, and applications. 

1.1.1 Complex Multi-Entity Systems 

Examples of complex multi-entity systems are plentiful in everyday life. 
Traffic on motorways is notoriously busy but most drivers seem to have learned 
the type of skill to avoid almost all kinds of collision, with only few exceptions. 
Brokers in stock markets seem to have developed a highly sophisticated 'herd- 
ing' behavior to buy and sell in the wake of market information. The balance 
between species of life forms in an ecosystem is equally complex and yet all of 
them seem to be settled into a dynamical equilibrium, most of the time. These 
scenarios point to a common phenomenon that can be observed in everyday 
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life - many independent minds can sometimes maintain order in a global sense 
despite the lack of communication, central planning, or prior arrangement. 

In contrast, team sports players, such as basketball players, spend many 
hours practicing team formations before they make 'magical' passes. Without 
such intensive practice, players will not be able to get the cue from others and 
defeat is imminent. Even when a team has been playing together for a long 
time, secret signs have to be given before desired results can be achieved. In 
the presence of a group of independent minds, team sports must be significantly 
different from motonvay traffic so that different behavior results. 

Nature is full of complex systems some of which have been extensively 
studied from different angles and with different objectives. Some researchers 
want to understand the working mechanism of a complex system concerned. 
Immunologists, for example, want to know the way in which the human im- 
mune system reacts to antigens [Louzoun et al., 20001. Similarly, economists 
want to know the factors contributing to the ups and downs in share prices. The 
knowledge gained in this way helps scientists predict future systems behavior. 
Others studying complex systems behavior want to simulate the observed com- 
plex behavior and formulate problem solving strategies for hard computational 
problems, such as global optimization. Computer scientists and matheniati- 
cians have formulated various algorithms based on natural evolution to solve 
their problems at hand. In general, one wants to be able to explain, predict, 
reconstruct, and deploy a complex system. 

1.1.2 Complex Systems Modeling 
An important task common to the above studies is to build models of certain 

complex systems. Techniques for complex systems modeling can be broadly 
divided into top-down and bottom-up approaches. Top-down approaches start 
from the high-level characterization of a system and use various tools, such 
as ordinary differential equations. These approaches generally treat every part 
of a complex system homogeneously and tend to model average cases well, 
where the behavioral difference of the individuals is minimal and can be ig- 
nored [Casti, 19971. However, this is not always applicable. 

Bottom-up approaches, on the other hand, start with the smallest and sim- 
plest entities of a complex system and model their behavior as follows: 

Autonomous: System entities are rational individuals that act indepen- 
dently. In other words, a central controller for directing and coordinating 
individual entities is absent. 

Emergent: They exhibit complex behavior that is not present or predefined 
in the behavior of the autonomous entities. 
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Adaptive: They often change their behavior in response to changes in the 
environment in which they are situated. 

w Self-organized: They are able to organize themselves to achieve the above. 

1.2. Basic Concepts and Taxonomies 
Complex systems modeling using a bottom-up approach centers around the 

external behavior and internal behavior of individual entities. The trickiest part 
of the modeling task is to find the relationship between these two types of be- 
havior. AOC adds a new dimension to the modeling process, i.e., modeling 
and deploying autonomy. Broadly speaking, autonomy is an attribute of en- 
tities in a complex system and autonomous entity is the building block of an 
AOC system. This section will first discuss different types of behavior and 
their relationships, and then define the notion of autonomy in the context of a 
computational system. 

1.2.1 Types of Behavior 
Entities in a complex system can perform certain primitive behavior as well 

as three types of complex behavior: emergent behavior, purposeful behavior, 
and emergent purposeful behavior. 

Definition 1.1 (Primitive behavior) The primitive behavior of an entity is the 
behavior that is governed by a set of predeJned rules. These rules dictate how 
the states of the entity are updated. They are triggered by some internal or 
external stimuli. 

Definition 1.2 (Emergent behavior) The emergent behavior of one or more 
entities is the behavior not inherent in the primitive behavior of an entity. Zt is 
achieved through nonlinear interactions among individual entities. 

It should be pointed out that emergent behavior may not be the same as 
collective behavior as it may not involve sharing of power or division of labor 
among individual entities. 

Definition 1.3 (Purposeful behavior) The purposeful behavior of one or more 
entities is the behavior that leads to certain desired states (i.e., goals) of enti- 
ties. 

Definition 1.4 (Emergent purposeful behavior) The emergentpurposeful be- 
havior of one or more entities is the emergent behavior that directs entities 
towards certain goals. 

It should be pointed out that the primitive behavior of individual entities 
may remain the same over time. However, if the entities of a complex system 
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are able to adapt, the primitive behavior of entities is bound to be different 
over time. As a result, different types of complex behavior may be emerged. 
Moreover, emergent behavior may not arise only through interactions among 
individual entities. It can also arise through interactions among groups of enti- 
ties. 

Let us take an ant colony as an example to illustrate the above behaviors. 
Food foraging is an individual task as well as a group task [Goss et al., 19901. 
Thus, the wandering around of ants is an example of purposeful behavior. 
Their convergence on a certain food source is an example of emergent be- 
havior. Ants start off with some kind of random walk in the absence of any 
information about a food source. While wandering, ants lay some quantities 
of pheromone along their paths. Once a food source is found, more ants will 
gradually follow the path between the food source and the nest, and conse- 
quently more pheromone will be laid along this path. More pheromone will in 
turn recruit more ants. This process acts as a positive feedback loop, until the 
food source is exhausted and the pheromone evapora.tes. This is an example of 
emergent purposeful behavior. 

1.2.2 Autonomy Defined 
According to the American Heritage Dictionary of the English Language, 

autonomy is defined as the condition or quality of being (1) autonomous, inde- 
pendence, (2) self-government or the right of self-government, self- 
determination, and self-directed. All these conditions or qualities relate to 
freedom from control by others with respect to primitive behavior. In the field 
of artificial intelligence, autonomy has been one of the key elements in many 
research subfields, such as intelligent agents [Jennings and Wooldridge, 19961. 

The above is a general definition of autonomy. In what follows, we will 
define the specific notion of autonomy in the context of AOC, i.e., entity au- 
tonomy, synthetic autonomy, emergent autonomy, and computational system 
autonomy. 

Definition 1.5 (Entity autonomy) Autonomy of an entity refers to its condi- 
tion or quality of being self-governed, self-determined, and self-directed. It 
guarantees that the primitive behavior of an entity is free from the explicit con- 
trol of other entities. 

The above definition is an endogenous view of autonomy. In other words, 
the primitive behavior of an entity is protected from the influence of others 
in a way similar to that of an object in the software engineering sense. How- 
ever, only direct perturbation is prohibited; indirect influence is allowed and 
encouraged. An underlying assumption is that all entities are able to make 
decisions for themselves, subject to information availability and self-imposed 
constraints. 
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As inspired by the autonomy of entities in natural complex systems, AOC 
aims at building multi-entity systems where entities are equipped with syn- 
thetic autonomy. 

Definition 1.6 (Synthetic autonomy) Synthetic autonomy of an entity is an 
abstracted equivalent of the autonomy of an entity in a natural complex sys- 
tem. An entity with synthetic autonomy is the fundamental building block of an 
autonomy oriented computing system. 

A computational system, built from computational entities with synthetic 
autonomy, exhibits emergent (purposeful) behavior. Correspondingly, we can 
define emergent autonomy as follows: 

Definition 1.7 (Emergent autonomy) Emergent autonomy is an observable, 
self-induced condition or quality of an autonomy oriented computing system 
that is composed of entities with synthetic autonomy. 

A computational system can be described at different levels of abstraction. 
If a human society is to be modeled as a computational system, abstraction 
can possibly occur at several levels: population, individual, biological system, 
cell, molecule, and atom. Note that entity autonomy, synthetic autonomy, and 
emergent autonomy according to Definitions 1.5- 1.7 are present at all these 
levels. The autonomy obtained at a lower level, say, the cell level, is the 
foundation of the autonomy at a higher level, say, the biological system level. 
This multi-level view of autonomy encompasses Brooks' subsumption archi- 
tecture [Brooks, 19911 in that complex behavior can be built up from multiple 
levels of simpler, and relatively more primitive, behavior. 

Based on the above definitions, autonomy in the context of a computational 
system can be stated as follows: 

Definition 1.8 (Computational system autonomy) Autonomy in a computa- 
tional system, built from computational entities with synthetic autonomy, refers 
to conditions or qualities of having self-governed, self-determined, and self- 
directed computational entities that exhibit emergent autonomy. 

1.3. General AOC Approaches 
AOC contains computational algorithms that employ autonomy as the core 

of complex systems behavior. They aim at reconstructing, explaining, and 
predicting the behavior of systems that are hard to be modeled using top-down 
approaches. Local interaction among autonomous entities is not only the 'glue' 
that helps entities form a coherent AOC system, but also the primary driving 
force of AOC. An abstracted version of some natural phenomenon is the start- 
ing point of AOC so that the problem at hand can be recasted. 
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Formulating an AOC system involves an appropriate analogy that normally 
comes from nature. Employing such an analogy requires identification, ab- 
straction, and reproduction of a certain natural phenomenon. The process of 
abstraction inevitably involves certain simplification of the natural counterpart. 
For example, the commonly used version of the genetic algorithm [Holland, 
19921 in the family of evolutionary algorithms simplifies the process of sexual 
evolution to selection, recombination, and mutation, without explicit identifi- 
cation of male and female. Evolutionary programming [Fogel et al., 19661 and 
evolution strategy [Schwefel, 19811 are closer to asexual reproduction with the 
addition of constraints on mutation and the introduction of mutation operator 
evolution, respectively. Despite these simplifications and modifications, evo- 
lutionary algorithms capture the essence of natural evolution and are proven 
global optimization techniques. 

According to their specific objectives, AOC systems can be developed using 
one of the three general approaches: 

1. AOC-by-fabrication aims at replicating and utilizing certain self-organized 
collective behavior from the real world to form a general purpose problem 
solver. The working mechanism is more or less known and may be sim- 
plified during the modeling process. Research in artificial life is related to 
this AOC approach up to the behavior replication stage. Nature inspired 
techniques, such as the genetic algorithm (GA) and the ant colony system, 
are typical examples of such an approach. 

2. AOC-by-prototyping attempts to understand the working mechanism un- 
derlying a complex system to be modeled. To do so, AOC-by-prototyping 
characterizes a group of autonomous entities and simulates their observed 
behavior. A manual trial-and-error process is employed to achieve an ar- 
tificial system as vivid as possible. Examples of this approach include the 
study of Internet ecology, traffic jams, Web log analysis, etc.. 

3.  AOC-by-self-discovery aims to automatically discover a solution to the 
problem at hand. The trial-and-error process of the AOC-by-prototyping 
approach is replaced by an autonomous process in the system. In other 
words, the difference measure between the desired emergent behavior and 
the current emergent behavior of the system in question becomes part of the 
feedback that affects the primitive behavior of an entity. Some evolution- 
ary algorithms that exhibit self-adaptive capabilities are examples of this 
approach. 

1.4. AOC as a New Computing Paradigm 
In the history of computing, there are several computing or programming 

paradigms worth noting, namely, imperative, functional, logic, and object ori- 
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ented paradigms. The imperative paradigm embodies computation in terms of 
a program state and statements that change the program state. An imperative 
program is a sequence of commands for a computer to perform. The functional 
paradigm views computation as a process for evaluating a group of mathemati- 
cal functions. In contrast to the imperative paradigm, it emphasizes the evalua- 
tion of functional expressions rather than the execution of commands. Both the 
imperative and the functional paradigms are to implement a mapping between 
inputs and outputs. The logic paradigm is to implement a general relation. It 
describes a set of features that a solution should have rather than a set of steps 
to obtain such a solution. The object oriented programming (OOP) paradigm 
is built on the imperative paradigm. It can be viewed as an extension of the 
imperative paradigm. It encapsulates variables and their operations as classes. 
As inspired by the object oriented computing paradigm, Shoham proposed an 
agent oriented programming (AOP) paradigm [Shoham, 19931, where the ba- 
sic element is an agent characterized by a group of mental parameters, such as 
beliefs, commitments, and choices. 

Unlike previous paradigms, AOC focuses on modeling and developing sys- 
tems with autonomous entities, in an attempt to solve hard computational prob- 
lems and to characterize complex systems behavior. In AOC, the basic element 
is an autonomous entity. The core concept of AOC is the autonomy of entities, 
which means that entities locally determine their behavior by themselves, and 
no global control mechanism exists. This is similar to the encapsulation idea 
of a class in OOP, i.e., the values of its member variables can only be modified 
by itself. 

Table 1.1 briefly compares three paradigms: object oriented programming 
(OOP), agent oriented programming (AOP), and autonomy oriented computing 
(AOC). In what follows, we will elaborate their essential differences. 

1.4.1 Basic Building Blocks 

First of all, it is interesting to note the difference in their basic elements. In 
OOP, the basic elements are objects embodied by encapsulated variables and 
corresponding operations. In AOP, the basic elements are agents augmented 
with mental parameters. In AOC, the basic elements are autonomous entities 
and their environment. AOC represents and solves a computing problem in a 
bottom-up fashion. It involves a group of autonomous entities and an environ- 
ment in which entities reside. An autonomous entity is characterized by its 
internal states and goals, and provided with an evaluation function, primitive 
behavior, and behavioral rules. Here, by 'autonomous' we mean that an entity 
behaves and makes decisions on the changes of its internal states, without con- 
trol from other entities or a 'commander' outside an AOC system. An entity in 
AOC does not have mental parameters as in AOP. 
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Table 1 .1 .  A comparison among object oriented programming (OOP), agent oriented pro- 
gramming (AOP) [Shoham, 19931, and autonomy oriented computing (AOC). 

Basic element 

Characterization 
of a basic ele- 
ment 

Interaction 

Computation 

Suitability 

Implementation 
of functionalitv 

Object Oriented 
Programming 

(OOP) 
object 

member vari- 
ables and member 
functions 

inheritance and 
message passing 
among objects 

message pass- 
ing and response 
methods 

-- 
(1) systems model- 
ing and (2) com- 
putation based on 
reusable codes 

member functions 

Agent Oriented 
Programming 

(AOP) 
agent 

beliefs, decisions, 
capabilities, and 
obligations 

messages among 
agents, including 
inform, request, 
offer, promise, 
decline, etc. 
message pass- 
ing and response 
methods 

(1) developing 
distributed systems 
and (2) solving 
distributed prob- 
lems [Kuhnel, 
19971 
mental state transi- 
tions 

Autonomy Oriented 
Computing 

( A W  
autonomous entity and 
environment 
states, evaluation func- 
tion, goals, primitive 
behavior, and behav- 
ioral rules 
(1) interaction between 
entities and their envi- 
ronment and (2) direct 
or indirect interaction 
among entities 
(1) aggregation of 
behavior and in- 
teraction and (2) 
self-organization in 
autonomous entities 
(1) solving hard com- 
putational problems 
and (2) characteriz- 
ing complex systems 
behavior 

primitive behaviors 

1.4.2 Computational Methodologies 
Now let us examine the computational philosophies of different paradigms. 

In both OOP and AOP, computation is embodied as a process of message pass- 
ing and response among objects or agents. In AOP, computation involves cer- 
tain techniques from Artificial Intelligence, such as knowledge representation, 
inference, and reasoning mechanisms. AOP is suitable for developing dis- 
tributed systems (e-g., work flow management) and solving distributed prob- 
lems (e.g . , transport scheduling) [Kuhnel, 19971. 

In AOC, computation is carried out through the self-organization of au- 
tonomous entities. Entities directly or indirectly interact with each other or 
with their environment in order to achieve their respective goals. As entities 
simultaneously behave and interact, their outcomes will be nonlinearly aggre- 
gated. In an AOC system, the local behavior of entities will be fine-tuned based 
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on negative feedback from the performance of the system. As a result, the non- 
linear aggregation will be biased to produce certain desired complex systems 
behaviors or states (i.e., goals). For instance, in the case of problem solving, 
the emergent system behavior or state corresponds to a solution to a problem 
at hand. 

Generally speaking, AOC works in a bottom-up manner, somewhat like the 
working mechanism of nature. This is the reason why AOC is well suitable for 
solving hard computational problems and for characterizing complex systems 
behavior. 

1.5. Related Areas 
In the preceding sections, we have presented the key concepts of AOC and 

have compared it with other computing paradigms. In what follows, we will 
list some of the existing research areas that are, to a certain extent, related 
to AOC, and mention their basic distinctions in computational objectives and 
principles. 

Artificial life (ALife) emphasizes the simulation of life in a computer set- 
ting. It, therefore, falls short of its use as a computational approach to prob- 
lem solving. On the other hand, AOC does not necessarily need to exactly 
reproduce lifelike behavior, as natural phenomena are usually abstracted 
and simplified. 

Agent-based simulation (ABS) shares a similar objective with AOC-by- 
prototyping - finding explanations to observed phenomena. Again, there is 
no computational problem to be solved in ABS. 

Self-organized criticality (SOC) [Jensen, 19981 was proposed to model cer- 
tain natural phenomena, such as avalanches, sand pile, rice pile, droplet 
formation, earthquakes, and evolution. Specifically, SOC "combines [. . . ] 
[the] concepts [of] self-organization and critical behavior to explain [. . . ] 
complexity" ([Jensen, 19981, p.2). It studies the critical point where a sys- 
tem will transit from order to chaos, and from stability to avalanche. 

Studies on multi-agent systems for distributed decision making [Durfee, 
1999, Sandholm, 19991 attempt to handle computational tasks by delegat- 
ing responsibilities to groups of agents. These agents are usually hetero- 
geneous entities, and different groups have different roles. For example, in 
the Zeus collaborative agent building framework, agents are divided into 
utility agents, such as name server, facilitator, and visualizer, and domain 
level agents [Nwana et al., 19981. The behavior of an individual agent is 
preprogrammed and can sometimes be complex. Complicated issues, such 
as negotiation and coordination, are of paramount importance. All these are 
usually part of the systems design, and hence require human interventions. 
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Another example of multi-entity computation is ecology of computation 
[Hogg and Huberman, 1993, Huberman, 19881, where a population of het- 
erogeneous computational systems share partial solutions to a common 
problem at hand. These individual problem solvers tackle the problem with 
different methods and, therefore, have different internal representations of 
the problem and solution. While it has been shown that this approach is 
efficient in solving a problem, the coordination of problem solvers needs 
to be carefully articulated so that different internal representations can be 
properly translated. 

Distributed constraint satisfaction problem (distributed CSP) [Yokoo et al., 
2001, Yokoo et al., 1998, Yokoo and Hirayama, 20001 was proposed to 
solve CSPs in a distributed manner. Specifically, the asynchronous back- 
tracking algorithm assigns a variable to an agent. A directed graph, called 
constraint network, is constructed to represent the relationships between 
variables. The asynchronous weak-commitment search algorithm enhanced 
the above algorithm by adding a dynarnical priority hierarchy. In the event 
of conflicts, the hierarchy structure is changed so that a suboptimal solution 
can be found first before incrementally arriving at a final solution. 

In distributed CSP, agents employ direct communicat,ions to coordinate the 
assignments to their respective variables. Generally speaking, direct com- 
munication in a large-scale multi-agent system is time-consuming. Hence, 
in an AOC system, autonomous entities utilize indirect communication 
through their environment. Furthermore, AOC is inspired by complex sys- 
tems where numerous entities self-organize themselves through nonlinear 
interactions and aggregations, and gradually emerge certain complex be- 
haviors. Since it is based on the idea of self-organization, AOC is suitable 
for large-scale, highly distributed problems. 

Swarm intelligence [Bonabeau et al., 1999, Bonabeau et al., 20001 is a 
demonstration of AOC-by-fabrication. It utilizes a social insect metaphor 
in problem solving. Unlike AOC, this study does not address the issues of 
discovering problem solvers or explaining complex systems behavior. 

1.6. Summary 
In this chapter, we have defined several fundamental notions underlying 

the AOC paradigm. We started with some observations of complex systems 
in natural and man-made systems, such as traffic, stock markets, and sports. 
We then identified several important characteristics in the basic entities of 
such complex systems, namely, autonomy, emergence, adaptation, and self- 
organization. These properties are the hallmarks of AOC as a new bottom-up 
paradigm for computing. As compared to other existing computing paradigms 
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or research areas, the goals of AOC are unique: To computationally synthe- 
size emergent purposeful behavior for problem solving and complex systems 
modeling. 

Also in this chapter, we have introduced three general AOC approaches, 
i.e., AOC-by-fabrication, AOC-by-prototyping, and AOC-by-self-discovery. 
AOC-by-fabrication refers to the reproduction of emergent behavior in compu- 
tation. With some knowledge of an underlying mechanism, an analogy of the 
mechanism observed from the emergent behavior is used as a general purpose 
problem solving technique. Synthesizing emergent behavior is not the end, but 
rather the means, of an AOC algorithm. AOC-by-prototyping is used to un- 
derstand the emergent behavior and working mechanism of a real-world com- 
plex system by hypothesizing and repeated experimentation. The end product 
of these simulations is a better understanding of, or explanations to, the real 
working mechanism of the modeled system. AOC-by-self-discovery refers to 
the AOC algorithms or systems that automatically emerge problem solvers or 
systems models in the absence of human intervention. In other words, self- 
adaptive algorithms or systems are desired. 
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Exercises 
1.1 Observe and briefly describe some forms of autonomy in natural or man- 

made systems. Think about how such forms may have been created in the 
first place, who are the key players, and what are the determining factors. 

1.2 Give examples to highlight the differences between AOC and the process 
models for the simulation of discrete event systems. 

1.3 Summarize the various concepts of behavior and autonomy as defined in 
this chapter, and then try to establish some inter-relationships among them. 

1.4 AOC emphasizes the principle of self-organization. How is this reflected 
in the three general approaches of AOC? 

1.5 With the help of a computing encyclopedia or the Web, write down your 
own definition of a top-down problem solving approach. What are the 
major steps in such an approach? 

1.6 Using AOC as an example of bottom-up approaches, illustrate their key 
characteristics. What are the main differences and relationships between 
bottom-up and top-down systems? 

1.7 What are the advantages and disadvantages of top-down and bottom-up 
problem solving approaches over each other? Show some examples of 
modeling or computing problems in which top-down approaches are not 
applicable. When are they applicable? 

1.8 Provide an in-depth survey of related references in the fields of computer 
science and systems science on some of the following concepts that are 
closely related to certain specific formulations and stages of an AOC ap- 
proach: autonomy, emergence, adaptation, and self-organization. 

1.9 Compare the scope of AOC with those of adaptive computation and com- 
plex adaptive systems studies as may be found in the existing literature. 
Explain how the AOC paradigm unifies such methods. 

1.10 By studying the literature on swarm intelligence, explain how swarm in- 
telligence methods can be generalized into an AOC approach. 

1.1 1 Among the computing and programming paradigms mentioned in this 
chapter, find one application problem far each of them. You should care- 
fully consider the nature of the problem such that it can best demonstrate 
the strengths of a paradigm adopted. 



Chapter 2 

AOC at a Glance 

2.1. Introduction 
AOC approaches share a basic form with many possible variants. As men- 

tioned in the preceding chapter, the basic form draws on the core notion of 
autonomy, with such characteristics as multi-entity formulation, local interac- 
tion, nonlinear aggregation, and self-organized computation. Tn order to get'a 
better idea on how these characteristics are reflected in handling some familiar 
computational or engineering problems, let us now take a look at three illus- 
trative examples: constraint satisfaction, image feature extraction, and robot 
spatial learning (or world modeling). In our illustrations, we will outline the 
basic autonomy models implemented and highlight the AOC systems perfor- 
mance. 

2.2. Autonomy Oriented Problem Solving 
Our first illustrated example deals with distributed problem solving. Liu et 

al. have developed an AOC-based method for solving CSPs [Liu and Han, 
2001, Liu et al., 20021. This method is intended to provide an alternative, 
multi-entity formulation that can be used to handle general CSPs and to find 
approximate solutions without too much computational cost. 

2.2.1 Autonomy Oriented Modeling 

In the AOC-based method, distributed entities represent variables and a two- 
dimensional lattice-like environment in which entities inhabit corresponds to 
the domains of variables. Thus, the positions of entities in such an environment 
constitute a possible solution to the corresponding CSP. The distributed multi- 
entity system self-organizes itself, as each entity follows its behavioral rules, 
and gradually evolves towards a global solution state. 
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Based on two general principles of 'survival of the fittest' - poor performers 
will be washed out, and 'law of the jungle' - weak performers will be elim- 
inated by stronger ones, the AOC-by-fabrication approach is applied to solve 
a benchmark constraint satisfaction problem [Han et al., 1999, Liu and Han, 
200 11. 

2.2.2 N-Queen Problem 

The n-queen problem aims to allocate n queens on an n x n chessboard 
such that no two queens are placed within the same row, column, and diagonal. 
Based on the constraints of the problem, a model is formulated in the following 
manner. Each queen is modeled as an autonomous entity in an AOC system 
and multiple queens are assigned to each row on the chessboard. This is to 
allow competition among the queens in the same row such that the queen with 
the best strategy survives. The system calculates the number of violated con- 
straints (i.e., violations) for each position on the chessboard. This represents 
the environmental information to all queens in making movement decisions, 
which are restricted to positions in the same row. Queens are allowed for three 
types of movement. A 'randomized-move' allows a queen to randomly select 
a new position. A 'least-move' selects a position with the least number of 
violations. A 'coop-move' promotes cooperation between queens by exclud- 
ing positions that will attack those queens with which one wants to cooperate. 
These types of movement are selected probabilistically. 

An initial energy is given to each queen. A queen will 'die' if its energy 
falls below a predefined threshold. Energy will change in two ways. When a 
queen moves to a new position that violates the set constraint with m queens, 
it loses m units of energy. This will also cause those queens that attack this 
new position to lose one unit of energy. The intention is to encourage a queen 
to find a position with the least number of violations. The 'law of the jungle' 
principle is implemented by having two or more queens occupying the same 
position to compete for the occupancy. The queen with the highest energy will 
win and eliminate the loser(s) by absorbing all the energy of the loser(s). 

The above model is able to efficiently solve n-queen problems with up to 
7,000 queens using a moderate hardware configuration. Experimental results 
show that the 'survival of the fittest' principle helps find an optimal solution 
much more quickly due to the introduction of competition. The randomized- 
move is indispensable as it helps an AOC system come out of local minima, al- 
though giving a high chance of making a randomized-move will lead to chaotic 
behavior. The probabilities of selecting 'least-move' and 'coop-move' should 
be comparable and increased with the size of a problem. 
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2.3. Autonomy Oriented Search 

In our next example, let us consider the following search problem: An envi- 
ronment contains a homogeneous region with the same physical feature. This 
region is referred to as a goal region. The feature of the goal can be evalu- 
ated based on some measurements. Here, the term 'measurement' is taken as a 
generic notion. The specific quantity that it refers to depends on the nature of 
applications. For instance, it may refer to the grey level intensity of an image, 
in the case of image processing. The task of autonomous entities is to search 
the feature locations of the goal region. Entities can recognize and distinguish 
feature locations, if encountered, and then decide and execute their reactive 
behavior. 

2.3.1 Autonomy Oriented Modeling 

In the AOC-based method, an entity checks its neighboring environment, 
i.e., small circles as in Figure 2.l(a), and selects its behavior according to the 
concentration of elements in the neighboring region. If the concentration is 
within a certain range, the current location satisfies a triggering condition. This 
activates the reproduction mechanism of the entity. 

Taking a border tracing entity for example (see Figure 2.l(a)), if an entity 
of the border sensitive class reaches a border position, this entity will inhabit 
at the border and proceed to reproduce both within its immediate neighboring 
region and inside a large region, as illustrated in Figures 2.l(b) and (c). 

2.3.2 Image Segmentation Problem 

Image segmentation requires to identify homogeneous regions within an im- 
age. However, homogeneity can be at varying degrees at different parts of the 
image. This presents problems to conventional methods, such as split-and- 
merge that segments an image by iteratively partitioning heterogeneous regions 
and simultaneously merging homogeneous ones [Pavlidis, 1992, Pitas, 19931. 
An autonomy oriented method has been developed to tackle the same task [Liu 
et al., 19971. Autonomous entities are deployed to the two-dimensional rep- 
resentation of an image, which is considered as the search space of entities. 
Each entity is equipped with an ability to assess the homogeneity of a region 
within a predefined locality. Specifically, homogeneity is defined by the rel- 
ative contrast, regional mean, and region standard deviation of the grey level 
intensity. When an autonomous entity locates a homogeneous region within 
the range of the pixel at which it presently resides, it breeds a certain number 
of offspring entities and delivers them to its local region in different directions. 
On the other hand, when a heterogeneous region is found, an entity will diffuse 
to another pixel in a certain direction within its local region. 
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Figure 2.1. An illustration of the behavior of autonomous entities. (a) As an entity, which is 
marked as a solid circle, moves to a new location, it senses its neighboring locations, marked 
by dotted circles in this example. Specifically, it counts the number of locations at which the 
grey level intensity is close to that of the entity's current location. (b) When the count reaches 
a certain value, it is said that a triggering condition has been satisfied. This is in fact the case 
in our illustrative example, as the location of the entity is right next to the border of a shaded 
region. Thus, the entity will asexually self-reproduce some offspring entities within its local 
region. (c) At the following steps, the offspring will diffuse to new locations. By doing so, 
some of them will encounter new border feature locations as well and thereafter self-reproduce 
more entities. On the other hand, the entities that cannot find any border feature locations after 
a given number of diffusion steps will be automatically turned off [Liu, 20011. 
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Through breeding behavior, an entity distributes its newly created offspring 
into the region that is found to be homogeneous, so that the offspring entities 
are more likely to find extensions to the current homogeneous region. Apart 
from breeding, an entity will also label an pixel that is found to be in a homo- 
geneous region. If an autonomous entity fails to find a homogeneous region 
during its lifespan (a predefined number of steps) or wanders off the search 
space during diffusion, it will be marked as an inactive entity. 

In summary, the stimulus from pixels will direct autonomous entities to two 
different behavioral tracts: breeding and pixel labeling, or diffusion and de- 
cay. The directions of breeding and diffusion are determined according to their 
respective behavioral vectors, which contain weights (between 0 and 1) of all 
possible directions. The weights are updated by considering the number of 
successful siblings in the respective directions. An entity is considered to be 
successful if it has found one or more pixels that are within a homogeneous 
region. This method of direction selection is somewhat similar to herding be- 
havior that only considers local information. A similar technique has been ap- 
plied to feature extraction tasks, such as border tracing and edge detection [Liu 
and Tang, 19991. A more difficult task where an image contains different ho- 
mogeneous regions has been successfully handled by deploying autonomous 
entities with different homogeneity criteria. 

2.3.3 An Illustrative Example 

In order to examine the above autonomy oriented method in the simultane- 
ous detection of significant image segments, Liu et al. [Liu, 2001, Liu et al., 
1997, Liu and Tang, 19991 have conducted several experiments in which var- 
ious classes of entities are defined and employed to extract different homoge- 
neous regions from an image, such as the example given in Figure 2.2 (t = 0). 
For this image segmentation task, 1,500 entities, evenly divided into three 
classes, are randomly distributed over the given image. Figure 2.2 presents 
a series of intermediate steps during the collective image segmentation. Fig- 
ure 2.2 (t = 50) gives the resultant markers as produced by the different classes 
of entities. 

2.3.4 Computational Steps 

In the AOC-based image segmentation, the computational steps required 
can be estimated by counting how many active entities are being used over 
time (i.e., the entities whose ages do not exceed a given life span). For the 
above mentioned collective image segmentation task, we have calculated the 
number of active entities in each class that have been involved over a period of 
50 steps, as given in Table 2.1. It can readily be noted that the total number of 
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(a) t = 0 @ ) t =  1 

(c) t = 2 (d) t = 5 

(e) t = 10 (f) t = 50 

Figure 2.2. Segmenting a landscape image that contains three complex-shaped homogeneous 
regions [Liu, 20011. 

active entities (i.e., computational steps) involved in extracting a homogeneous 
region is less than the size of the given image, 526 x 197 = 103,622. 

Table 2.1. The number of active entities involved in extracting the homogeneous regions of a 
landscape image. 

Class # of active entities used 
(time step = 1 50) 

Class- 1 
Class-2 
Class-3 
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2.4. Autonomy Oriented Learning 
Our final example demonstrates how AOC can be embodied in a group of 

distributed autonomous robots to perform a task of collective spatial learning 
(or world modeling). 

Ant colonies are able to collect objects, such as food or dead ants, and 
place them in particular places. Collective behavior in a complex system of- 
fers the possibilities of enhanced task performance, increased task reliability, 
and decreased computational cost over traditional complex systems. Much 
work to date in collective robotics focuses on limited cases, such as flocking 
and foraging. Typical entities in those studies either use manually built (non- 
learning) controllers [Balch and Arkin, 19951, or perform a learning task in 
simulated [Balch, 19971 or relatively simple physical environments [Mataric, 
19941. One way to generate robust collective behavior is to apply biologically 
inspired adaptive algorithms at a team level. In such a case, the environment 
plays a central role in triggering a certain basic behavior at any given time. 
It draws on the idea of providing robots with a range of primitive behaviors 
and letting the environment determine which behavior is more suitable as a 
response to a certain stimulus. The integration of learning methods can sig- 
nificantly contribute to the performance of a team of self-programming robots 
for some predefined tasks. These individual robots can automatically program 
their task-handling behavior to adapt to dynamical changes in their task envi- 
ronment in a collective manner. 

2.4.1 World Modeling 
Liu and Wu have developed an AOC-based method for collective world 

modeling with a group of mobile robots in an unknown, less structured en- 
vironment [Liu and Wu, 20011. The goal is to enable mobile robots to coop- 
eratively perform a map building task with fewer sensory measurement steps, 
that is, to construct a potential field map as efficiently as possible. The follow- 
ing issues are addressed in developing the proposed world modeling method: 

w How to formally define and represent the reactive behavior of mobile robots 
and the underlying adaptation mechanisms to enable the dynamical acqui- 
sition of collective behavior? 

w How to solve the problem of collective world modeling (i.e., potential field 
map building) in an unknown robot environment based on self-organization 
principles? 

The artificial potential field (APF) theory states that for any goal directed 
robot in an environment that contains stationary or dynamically moving ob- 
stacles, an APF can be formulated and computed by taking into account an 
attractive pole at the goal position of the robot and repulsive surfaces of the 
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obstacles. Using APF, any dynamical changes in the environment can be mod- 
eled by updating the original artificial potential field. With APF, a robot can 
reach a stable configuration in its environment by following the negative gra- 
dient of its potential field. 

An important challenge in the practical applications of the APF methodol- 
ogy is that evolving a stable APF is a time consuming learning process, which 
requires a large amount of input data coming from the robot-environment inter- 
action. The distributed self-organization method for collective APF modeling 
with a group of mobile robots begins with the modeling of local interactions 
between the robots and their environment, and then applies a global optimiza- 
tion method for selecting the reactive motion behavior of individual robots in 
an attempt to maximize the overall effectiveness of collectively accomplishing 
a task. 

The main idea behind self-organization based collective task handling is that 
multiple robots are equipped with a repository of behavioral responses in such 
a way as to create some desirable global order, e.g., the fulfillment of a given 
task. For instance, mobile robots may independently interact with their local 
environment. Based on their performance (e.g., distributed proximity sensory 
measurements), some global world models of an unknown environment (i.e., 
global order) can be dynamically and incrementally self-organized. 

2.4.2 Self-organization 

In the case of collective world modeling, self-organization is carried out as 
follows: Suppose that a robot moves to position po and measures its distances 
to the surrounding obstacles of its environment in several directions (n). These 
measurements are recorded in a sensing vector, So = [dy , d! , . . . , dy , - . , d:] , 
with respect to position po where dy denotes the distance between position 
po and an obstacle sensed in the ith direction. The robot will then associate 
this information to its adjacent positions in the environment by estimating the 
proximity values in the neighboring positions. The estimated proximity of 
any position pj inside the neighboring region of po to a sensed obstacle will 

A .  

be calculated as follows: d i  = d; - pj . cosP (i = 1 ,2 ,  . . - , n), where 

,8 = a t )  - a,. a t )  and aj denote the polar angle of the sensing direction 
and that of position pj ,  respectively. 2; is an estimate for pj based on the 
ith direction sensing value. d! is the current measurement taken from po in 
the ith direction. Thus, the estimated proximity values for position pj can be 

[ ̂ '  A '  

A '  

written as: $ = d;, d i ,  . . . , d i ,  . . , &I. Figure 2.3 illustrates the distance 
association scheme. 

Next, we define a confidence weight for each element of s ~ ,  that is, a func- 
tion of the distance between a robot and position pj ,  or specifically, w j  = 
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Figure 2.3. An illustration of the distance association scheme [Liu, 20011. 

e?~:, where 1) is a positive constant; pj is the distance between the robot and 
position pj . 

The potential field estimate at position pj is then computed as follows: 

where X is a positive constant. Thus, at time t ,  a set of potential field estimates, 
0 = { , u , . . - , Uti 3 , . . . , , jk},  can be derived by k robots with respect 
to position p j ,  that is, 

4 t ni-, U e, (2.2) 

where R:-, denotes a set of potential field estimates for position pj at time 
t - 1, and Q = uik, where subscript k indicates that the potential value is 

estimated based on the measurement of the kth robot. 9: is associated with a 
t confidence weight set: ~i = {wjl , wp , . . . , w? , - . . , wt }. 

Hence at time t ,  an acceptable potential field value can readily be calculated 
as follows: 
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where ti$ denotes a normalized weight component of w!, i.e., 

2.4.3 Adaptation 
In order to optimize the efficiency of the above self-organization based col- 

lective world modeling, we need an adaptation mechanism for distributed au- 
tonomous robots to dynamically generate and modify their group cooperative 
behavior based on some group performance criteria. The selected (i.e., high 
fitness) cooperative behavior is used to control autonomous robots in their in- 
teractions with the environment. 

In order to evaluate the group fitness, we identify two situations involved in 
the evolution: One is spatial diffusion when the inter-distance between robots i 
and j ,  aij, is less than or equal to a threshold, 7, and the other is area coverage 
when aij > 7. In either situation, we can use a unified direction representation 
of robot proximity, denoted by Bi to indicate a significant proximity direction 
of all proximity stimuli to robot i. Having identified these two situations in 
group robots, we can reduce the problem of behavior evolution into that of 
acquiring two types of individual reactive motion behavior: One for spatial 
diffusion and the other for area coverage, respectively. Both types of reactive 
behavior respond to proximity stimuli as defined in terms of a unified signifi- 
cant proximity direction. 

The fitness function will consist of two terms: One is called general fitness, 
denoted by fg, and the other is called special fitness, denoted by f,. The gen- 
eral fitness term encourages group robots to explore the potential field in new, 
less confident regions, and at the same time, avoid repeating the work of other 
robots. It is defined as follows: 

where m a ~ { w ~ ~ }  denotes the maximal confidence weight corresponding to the 
position of robot i. m denotes the number of robots that are grouped together 
during one evolutionary movement step (of several generations). me denotes 
the number of robots that do not belong to m and have just selected and ex- 
ecuted their next behavior. aij denotes the distance between robots i and j, 
which is greater than a predefined distance threshold, 6. 
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Two special fitness terms will be defined corresponding to the performance 
of spatial diffusion and area coverage: 

md-l  r n d  

spatialdiffusion: f S l  = n ,/-, 

and 
dAV 

area-coverage: f S z  = - n z  .li ' 
where md denotes the number of spatially diffusing robots whose inter-distances 
aij have become greater than the distance threshold, 7. AV denotes the total 
number of positions visited by a group of m, area-covering robots based on 
their selected motion directions. Ci denotes a significant proximity distance 
between robot i and other robots in the environment. 

2.5. Summary 
So far, we have provided three illustrative examples: constraint problem 

solving, distributed search, and spatial learning. We have stated the basic 
problem requirements and showed the ideas behind the AOC solutions, rang- 
ing from their formulations to the emergence of collective solutions through 
self-organization. 

From the illustrations, we can note that using an AOC-based method to 
solve a problem is essentially to build an autonomous system, which usually 
involves a group of autonomous entities residing in an environment. Entities 
are equipped with some simple behaviors, such as move, diffuse, breed, and 
decay, and one or more goals (e.g., to locate a pixel in a homogeneous region). 
In order to achieve their goals, entities either directly interact with each other 
or indirectly interact via their environment. Through interactions, entities ac- 
cumulate their behavioral outcomes and some collective behaviors or patterns 
emerge. Ideally, these collective behaviors or patterns are what we are expect- 
ing, i.e., solutions to our problems at hand. 
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Exercises 
2.1 Provide a conceptual blueprint for a potential AOC programming language 

that can support the applications as mentioned in this chapter. What will 
be its constructs? What will be the key characteristics and requirements 
of its operations? 

2.2 In order to evaluate computing languages or environments for AOC, what 
will be your suggested criteria? What will be your suggested benchmark 
problems? 

2.3 AOC offers a new way of tackling complexity, whether in problem solving 
or in complex systems modeling, by utilizing localized, autonomous and 
yet low-cost (computationally and physically speaking), and self-organized 
entities. Based on the illustrative examples given in this chapter, try to 
suggest and develop some other alternative models of AOC, as inspired by 
nature, for solving the same or different problems. 

2.4 Identify from the above solved problems the real benefits of taking this 
route to complexity. 

2.5 The example on world modeling in this chapter utilizes self-organized col- 
lective behavior in a multi-robot system to model an unknown environ- 
ment. Think and propose a similar solution to the problem of multi-robot 
navigation. 

2.6 Can you summarize the similarity in computational ideas between the 
image segmentation example and the world modeling example? (for in- 
stance, both have been treated as distributed problem solving). 

2.7 The chapter illustrates a search (optimization based) strategy for image 
segmentation and feature detection. From a computer vision point of view, 
compare this strategy with some traditional search based segmentation al- 
gorithms, and evaluate their performances with other computer vision seg- 
mentation benchmarks. 



Chapter 3 

Design and Engineering Issues 

3.1. Introduction 

In the preceding chapters, we have provided the basic concepts and illustra- 
tions of AOC in problem solving. From a design and engineering point of view, 
we still face several unsolved issues, namely, what is an -autonomous entity in 
an AOC system generally composed of? What are the functional modules of 
an entity? What are the inter-relationships among autonomous entities? What 
steps are involved in engineering an AOC system? What features should be 
demonstrated from such engineered AOC systems? In what follows, we will 
address these design and engineering issues. 

3.2. Functional Modules in an Autonomous 
Entity 

Generally speaking, an AOC system contains a group of autonomous enti- 
ties. Each autonomous entity is composed of a detector (or an array of them), 
an effector (again, there can be an array of them), and a repository of local 
behavioral rules. Figure 3.1 presents a schematic diagram illustrating the func- 
tional modules in an autonomous entity. 

As shown in Figure 3.1, the role of a detector in an entity is to receive in- 
formation from its neighbors as well as its local environment. For instance, in 
the AOC-based image segmentation, this information is the grey-scale inten- 
sities of the neighboring positions of an entity. In the case of a bird flocking 
simulation, this information includes the speeds of birds, directions in which 
they are heading, and the distances between the birds in question. Details of 
the content and format of this information need to be defined according to the 
system to be modeled or the problem to be solved. 



28 AUTONOMY ORIENTED COMPUTING 

Feedback and shared 
information from other 

autonomous entities 

The en 

States of neighbors 

n autonomous 

Sharable information 

Figure 3.1. Functional modules in an autonomous entity. 

Here, the notion of neighbor can be defined in terms of position (e.g., the 
bird in front, to the left, and to the right), distance (e.g., a radial distance of two 
grids), or both (i.e., the birds up to 2 grids in front). Environmental information 
conveys the status of a certain feature, for example, the presence of food, which 
is of interest to an autonomous entity. The environment can help carry sharable 
information. 

The effector of an autonomous entity refers to the device for expressing 
behaviors. These behaviors can make a change either in the internal state of 
an entity or in the environment where the entity inhabits. An important role of 
the effector, as a part of the primitive behavior model, is to facilitate implicit 
information sharing between autonomous entities. 

Central to an autonomous entity are the behavioral rules that govern how the 
entity should act or react to the information collected by its detector from the 
environment and its neighbors. These rules decide what state this entity should 
change to and what information this entity should release via its effector to the 
environment. An example of sharable information is the pheromone in an ant 
system. This information is untargeted and the communications among ants 
via the environment are undirected; any ant can pick up the information and 
react according to its own behavioral rules. 

In order to adapt themselves to a dynamically changing environment with- 
out being explicitly told in advance, autonomous entities need to modify their 
behavioral rules over time. This is the learning capability of autonomous enti- 
ties. 

It is worth noting that randomness plays a part in the decision making pro- 
cess of an autonomous entity, despite the presence of a behavioral rule set. 
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This is to allow an autonomous entity to explore uncharted territories even in 
the presence of mounting evidence that it should exploit a certain path. On 
the other hand, randomness helps an autonomous entity resolve conflicts in 
the presence of decision making uncertainty, and avoid getting stuck in local 
optima. 

As one of the main components in an AOC system, an environment usually 
plays three roles. First, it serves as the domain in which autonomous entities 
roam. This is a static view of the environment. Secondly, th; environment can 
also act as a 'notice board' where autonomous entities can post and read their 
sharable information. In this sense, the environment can also be regarded as 
an indirect communication medium among entities. This is a dynamical view 
of the environment. For example, StarLogo [Resnick, 19941 has patches in the 
environment which knows how to grow food or evaporate ants' pheromone. 
Sometimes the environment provides feedback to autonomous entities regard- 
ing their behavior. For example, in the n-queen constraint satisfaction prob- 
lem, the environment can tell a queen how many constraints are violated in its 
neighborhood after it takes a move. This, in effect, translates the global goal 
of the whole AOC system to a local goal of individual entities. Thirdly, the 
environment keeps a central clock that helps synchronize the behaviors of all 
autonomous entities, if necessary. 

3.3. Major Phases in Developing AOC Systems 
In the second part of this book, we will present a number of case studies 

on AOC applications. These applications cover not only constraint satisfaction 
and optimization problem solving, but also complex systems behavior charac- 
terization. AOC systems in these case studies share several commonalities. 

First, there are a collection of autonomous entities. If AOC is used to solve 
a particular problem, the right level of abstraction has to be chosen so that 
autonomous entities can be identified. This does not exclude the repeated ap- 
plication of this technique to suit the need of the specific problem that can be 
best modeled by multiple levels of abstraction. Secondly, there are some rela- 
tionships between autonomous entities in the form of constraints, such as limi- 
tations on the position inhabitable by a queen in an n-queen problem. Thirdly, 
a performance measurement is available to assess the quality of any solution. 
It can be used in AOC as a guideline to direct the behavior of autonomous 
entities. 

AOC can be viewed as a methodology for engineering a computing system 
to solve hard computational problems or model complex systems. In general, 
developing an AOC system or formulating an AOC algorithm often involves 
three major phases (see Figure 3.2). The first phase, natural system identifica- 
tion, can be viewed as the precursor to actual system modeling. It concerns the 
selection of an appropriate analogy in the natural or physical world. It involves 



AUTONOMY ORIENTED COMPUTING 

ldentify desired 
system behavior 

+ 
ldentify system 

parameters 

I 
f 

environment 

contributing 

neighborhood representation 

Define primitive 
behavior and 

behavioral rules 

ldentify system 
behavior 

measurement 

Figure 3.2. The major phases in developing an AOC system. 

two specific tasks: 'identify desired behavior' and 'identify system parame- 
ters'. Choosing a right analogy is key to the success of an AOC system and the 
right system usually presents itself through its behavior. Once an appropriate 
analogy is chosen, details, such as the number of entities to run and the length 
of time to run a simulation, need to be decided. 

The second phase, artificial system construction, involves all elements in an 
AOC system. This phase is divided into two major subphases: autonomous 
entity modeling and environment modeling. The 'identify contributing enti- 
ties' task is the first and the most important task in this phase. Designers are 
required to choose the level of detail to be modeled, which is appropriate to 
the problem at hand. The 'define neighborhood' task defines a certain mea- 
surement (e.g., positions and distance) in the environment. Within the neigh- 
borhood of an entity, local interactions can occur and local information can be 
collected. The 'define entity representation' task handles how to characterize 
an autonomous entity, including its internal states and goals etc. The last task 
concerning entities, 'define primitive behavior and behavioral rules', defines 
the ways in which an autonomous entity reacts to various information it has 
collected within its neighborhood and the ways in which it adapts its primitive 
behavior and behavioral rules. 
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The tasks that concern the environment are 'identify environment charac- 
teristics' and 'define environment representation'. The former task concerns 
the role that the environment plays in conveying the information shared be- 
tween autonomous entities. The latter task addresses the characterization of 
the environment. 

The third phase, performance measurement, concerns the evaluation criteria 
for comparing the artificial system manifested by an AOC system with its natu- 
ral counterpart. The measurement provides an indication to modify the current 
set of individual behaviors and behavioral rules. The end of this phase triggers 
the next cycle of the AOC modeling, if necessary, and involves modifications 
to some or all AOC elements defined in the previous cycle. 

3.4. Engineering Issues 
The above mentioned three phases can be implemented with varying de- 

grees of human involvement, from detailed engineering work to an automated 
process, leading to AOC systems capable of achieving various problem solving 
and systems modeling objectives. 

From an engineering point of view, AOC systems differ in at least five as- 
pects: 

1.  Knowledge of working mechanism: It is often the case in AOC that analo- 
gies are drawn from the natural or physical world. Therefore, the working 
mechanism becomes the key basis of modeling. 

2. Designer's involvement: Having detailed knowledge of the working mech- 
anism means more detailed work by a designer in implementing an AOC 
system or algorithm. 

3. Uncertainty in results: Uncertainty in the outcome of an AOC system 
varies according to the knowledge of the actual working mechanism. 

4. Computational cost: Computational cost refers to the time and space com- 
plexity of an algorithm. Generally speaking, the computational cost of a 
general AOC algorithm is higher than that of a customized AOC algorithm 
for a particular problem. 

5. Time in process modeling: We refer to the time spending on building an 
AOC system as the time in process modeling. It hitches on the complexity 
of the problem to be solved or the system to be modeled as well as the 
degree of understanding of the problem or system. 

Figure 3.3 shows the relative rank of the general AOC approaches according 
to the above five criteria. 
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Figure 3.3. Ranking AOC approaches according to their engineering requirements: 1 being 
the easiest and 3 the hardest. 

Following the AOC-by-fabrication approach requires detailed knowledge of 
the working mechanism and a high degree of a designer's involvement in im- 
plementing a corresponding AOC system. On the other hand, an AOC system 
built in this way has the lowest computational cost and it is safe to say that it 
will work. The overall time needed to build such an AOC system is relatively 
long. 

Building an AOC-by-self-discovery system, on the other hand, does not 
heavily rely on detailed knowledge about the workmg mechanism because it 
is usually unknown. A designer does not spend too much time on crafting the 
system. As a result, an AOC-by-self-discovery system requires higher com- 
putational cost than an AOC-by-fabrication system. It naturally takes a long 
time to achieve its task. It follows that the risk of failure (i.e., not able to find a 
solution to the problem to be solved or an appropriate model of the system to 
be modeled) is the highest with an AOC-by-self-discovery system. 

The level of difficulty in constructing an AOC-by-prototyping system is be- 
tween the above two, as some information is already known. As an trial-and- 
error process is involved in the AOC-by-prototyping approach, an AOC-by- 
prototyping system requires the most involvement of a designer. Accordingly, 
more time is generally needed to build such a system. In addition, an AOC-by- 
prototyping system incurs a higher risk of failing to find a solution. 
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3.5. Features and Characteristics of AOC 
Systems 

AOC systems that are designed and engineered following the outlines pro- 
vided in the preceding sections will exhibit some most important and interest- 
ing features, which can be characterized as follows: 

Homogeneity 

Simplicity 

Locality 

Implicity 

Uncertainty 

Amplification 

Recursion 

Scalability 

Openness 

Complex systems are made up of similar individuals. They 
may differ only in the parameters for characterizing their 
goals, behaviors, and behavioral rules, but not in their struc- 
tures. For example, in the AOC-based image segmentation, 
although entities are classified into three different classes, 
they are homogeneous in that they differ only in the param- 
eters for describing their goals. 

The behavior model of each autonomous entity is simple. 

The interactions among autonomous entities are strictly local 
although the notion of locality can be physical as well as 
logical. 

Another form of interaction comes from the implicit knowl- 
edge sharing among autonomous entities via their common 
environment. 

Behavior is not purely deterministic. There is always a cer- 
tain degree of randomness and uncertainty in the decision 
making process of entities. 

Desirable behavior is amplified while undesirable behavior 
is eliminated via mechanisms, such as birth and death. This 
is also the result of positive feedback from the environment. 

Complex behavior is aggregated from primitive autonomy 
of entities through iterations. The result of aggregation is 
emergent autonomy. A system exhibiting such emergent au- 
tonomy can serve as the basic element of a more complex 
system that may show its own emergent autonomy. 

Cutting across all the AOC approaches is the issue of scala- 
bility. AOC seeks to take a bold view of scalability require- 
ments, as it envisions an environment able to scale up or 
down according to the ever changing needs of a dynarnical 
complex system. 

New types of autonomous entity can be accommodated seam- 
lessly&to an AOC system. 
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3.6. Performance Considerations 
Any computational algorithms can be assessed with respect to their gener- 

ality, robustness, completeness, efficiency, and computational cost. General- 
ity measures the applicability of an algorithm to different problem domains. 
Robustness concerns the sensitivity of an algorithm in terms of its parameter 
settings. Completeness of an algorithm assesses its ability to search the whole 
solution space. Efficiency measures the effectiveness of an algorithm to find 
an optimal solution and how quickly such a solution is found. It is usually 
reflected in the computational cost of an algorithm. Here, computational cost 
refers to the requirements on computational cycles and memory space in the 
process of finding a solution. 

AOC is a general problem solving methodology. It is not designed for a 
particular problem. Therefore, it should highly score on generality. AOC al- 
gorithms score equally high on completeness as they are able to effectively 
cover the 'more promising' areas of the solution space. On the front of ef- 
ficiency, AOC algorithms can always find a 'good enough' solution within a 
short period of time. Given enough time, the globally optimal solution can be 
found. Directly related to this is the computational cost. AOC algorithms may 
not highly score in this aspect as they usually have a group of elements and 
require some computational cycles for evaluating each candidate and accumu- 
lating enough positive feedback to make a solution stand out. Robustness is 
usually high but sometimes is hampered by the formulation of a solution as it 
directly affects the quality measure of a solution and indirectly the progress. 

Besides the above considerations, there exist a number of factors that affect 
the performance of an AOC system. In what follows, we will highlight some 
of the most critical ones. 

Randomness is an important factor in any self-organizing system, such as 
those formulated according to the AOC principles. On one hand, it helps au- 
tonomous entities in an AOC system explore new areas in the corresponding 
solution space. On the other hand, it introduces a degree of uncertainty regard- 
ing the outcome of a simulation. Therefore, it is important to have a concrete 
assessment of the progress in an AOC system. 

Emergence is a property of AOC that is not pre-programmable. Therefore, 
it is not possible to measure it directly from the parameters that characterize 
an AOC system and its elements. Wright et al. have suggested a measure of 
emergence by likening a self-organized system to a set of nonlinear springs and 
dampers to represent local interactions among autonomous entities [Wright 
et al., 20001. They argued that factors, such as spatial and velocity coherence 
in a flock of birds, are observable behaviors due to the same underlying mecha- 
nism. They further argued that there is a strong correlation between the abrupt 
changes in observable behavior and emergent behavior while system parame- 
ters are being changed smoothly. Therefore, these factors need to be consid- 
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ered together, not separately. A Harnilitonian model using Shannon entropy 
is formulated and a dimensionality measure is defined based on the entropy, 
which is linked directly with a phase transition hypothesis and has been used 
as feedback to a GA to guide its adaptation. 

Ronald et al. has also defined a qualitative emergence test based on two dif- 
ferent viewpoints and a surprise factor [Ronald et al., 19991. Specifically, from 
a designer's point of view, a design language L1 is used to describe local inter- 
actions. From an observer's point of view, an observed behavior is described 
by an observation language L2. Surprise is defined as the difference between 
the expected outcome of L1 as perceived by an observer and the observation 
by an observer using L2. 

The complexity of AOC can have a direct implication on whether or not a 
problem is solvable. Standish has pointed out that the complexity of a com- 
plex system is context dependent and can be measured by the entropy of the 
system [Standish, 20011. The entropy is calculated from the length of the sys- 
tem description, the size of the alphabet needed to encode the description, and 
the size of all equivalent descriptions. Standish has applied this principle to 
measure the complexity of the artificial life system, Tierra [Standish, 19991. 
Nehaniv and Rhodes have also defined a hierarchical complexity measure for a 
biological system [Nehaniv and Rhodes, 20001. They have defined a maximal 
complexity measure as the least number of active computing levels that are 
required to hierarchically build a finite transformation semigroup from simple 
components [Nehaniv and Rhodes, 20001. It increases as the computational 
power increases, but in a bounded manner. 

The evolvability of AOC [Nehaniv, 2000~1 refers to its ability to evolve an 
optimal solution. Zhang and Shimohara have made an interesting observa- 
tion in their experiments with Tierra in which the domination of certain geno- 
types does not mean that evolution stops [Zhang and Shimohara, 20001. A new 
species comes to dominate a population beyond a seemingly stagnated state, 
if the population is allowed to continue to evolve. They have defined an index 
to measure evolutionary actions over time. This index is a weighted entropy 
of size distribution of a Tierran organism. The weight function is set to be 
the ratio of Tierran sizes at adjacent steps. The experimental results show that 
during the period of strong evolutionary actions, the entropy increases. The 
entropy will then drop to a low level and stay there when evolutionary actions 
dampen. Nehaniv has proposed to measure evolvability as the rate of complex- 
ity (defined above) increase [Nehaniv, 2000bl. By considering complexity in 
a longer time, Nehaniv has shown that the proposed evolvability measure is 
upper-bounded by one or one plus the complexity of an individual's ancestor. 
Here, the specific upper bound depends on the type of step that has occurred 
during the evolution from the said ancestor to the said individual. 
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3.7. Simulation Environments 
Performing experiments in AOC requires writing either a simulation envi- 

ronment or tailor-made programs. This section reviews two publicly available 
and widely used environments. 

StarLogo [Resnick, 1994, StarLogo, 20001 is a simulation environment for 
explorations of colony-like behavior. It is a parallel implementation of the 
Logo programming language. A StarLogo world mainly consists of two classes 
of objects: environment and creature. An environment is a grid of patches that 
are dynamical and perform functions like diffusing pheromone. The patches 
can be inhabited by autonomous creatures, called turtles, or other species named 
by the programmer. Each turtle as well as patch can be programmed with cer- 
tain behavior. The status of any patch and turtle can be queried and the objects 
related to patches can be altered by any turtle. Status update of all objects in 
StarLogo is synchronous. The latest version of StarLogo comes with a visu- 
alizer where a user can visually design the world of simulations. Many sim- 
ulations have been implemented, such as termites, slime molds, traffic jam, 
among others. It is a good starting point to experiment with AOC. However, 
computational systems have not yet been reported. 

Swarm [Minar et al., 1996, Swarm, 19941 is a larger scale simulation en- 
vironment where users can perform simulations of complex adaptive systems. 
The basic element is a swarm, which is a collection of agents with a sched- 
ule of events. Swarms can consist of other swarms. This is similar to the 
recursive relationship between emergent autonomy and synthetic autonomy in 
AOC. Everything in Swarm, including the environment, is an agent with spe- 
cific behavior. This provides a high degree of flexibility for engineers to exper- 
iment with different setups. Given in the object oriented simulation system is 
a set of libraries, namely, simulation libraries, software support libraries, and 
model-specific libraries. These libraries of object classes make the modeling 
process easier by hiding certain simulation-specific technicalities, such as an 
order of action execution and visualization, allowing modelers to concentrate 
on the problem-specific issues, such as agent behaviors and events of a partic- 
ular simulation. 

3.8. Summary 
In this chapter, we have identified and discussed several important issues 

in designing and engineering an AOC system. Generally speaking, an au- 
tonomous entity in an AOC system contains several common functional mod- 
ules for sensing information, making decisions, and executing actions. Three 
phases are involved in developing AOC systems for achieving various objec- 
tives. The engineering steps in these phases can differ from one system to 
another in terms of human involvement, depending on our knowledge about 
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problems or systems at hand. Moreover, we have identified several key fea- 
tures and attributes in an engineered AOC system, such as locality and amplifi- 
cation. We have discussed some important performance characteristics as well 
as determining factors in its performance. 
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Exercises 
3.1 Define the behaviors of team sports players, as in basketball, American 

football, or soccer, using the autonomy modeling process discussed in this 
chapter. 

3.2 What difference would it make if the behavior of an autonomous entity is 
totally deterministic? 

3.3 Direct communication between players, by spoken or body language, is 
important to the success of a team in team sports. However, this is not 
explicitly defined in the autonomy modeling process. Can you think of 
any practical reasons why? How would you model direct communication? 

3.4 Apart from the performance measurements mentioned in this chapter, can 
you think of any other useful metrics? 

3.5 How would an AOC algorithm benefit from parallel machines or cluster 
computing resources? How does the ability to perform synchronous status 
updates affect the performance of an AOC algorithm? 



Chapter 4 

A Formal Framework of AOC 

4.1. Introduction 
The preceding chapter has presented an overview of autonomous entities 

in an AOC system as well as the major phases in developing an AOC sys- 
tem. In essence, AOC systems implemented with different approaches have 
similar structures and operating mechanisms. In order to better describe and 
model AOC systems using a unified language, in this chapter we will provide 
a formal, common framework for AOC systems [Liu et al., 2004al. In partic- 
ular, we will formally introduce such key elements as environment, entity, and 
interaction. The formal definitions are meant to show the inter-relationships 
among common concepts involved in AOC. Based on the definitions, we will 
highlight the essence of AOC systems, i.e., the process of self-organization in 
autonomous entities. 

4.2. Elements of an AOC System 
An AOC system usually contains a group of autonomous entities and an 

environment where entities reside. We can formally define an AOC system as 
follows: 

Definition 4.1 (Autonomy oriented computing system) An AOC system is a 
tuple ({el, ea, . - . , ei, - - - , eN), El 9), where {el, ea,. . . , ei,. . . , eN) is a 
group of autonomous entities; E is an environment in which entities reside; 
9 is a system objective function, which is usually a nonlinear function of en- 
tity states. 
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4.2.1 Environment 
As we have mentioned in Section 3.2, the environment of an AOC system 

plays three roles. As compared with the other two roles, the second one, i.e., a 
communication medium among autonomous entities, is more directly related 
to the behavior, interaction, and self-organization of entities. Specifically, an 
environment plays its communication medium role through its state changes as 
caused by the primitive behavior of autonomous entities. For this role, we can 
formally define an environment as follows: 

Definition 4.2 (Environment) Environment E is characterized by a set &S = 

{esl,  esa, . , esi, - , esN,,), where each esi E Desi corresponds to a static 
or dynamical attribute, NES denotes the number of attributes. At each moment, 
&S represents the current state of environment E. Thus, the state space of E is 
given by DES = D,,, x Des, x . - .  x Desi x - x DesNES. 

For example, in the AOC-based image segmentation shown in Section 2.3, 
an environment is characterized by a static attribute, i.e., the grey-scale inten- 
sity corresponding to each pixel. 

4.2.2 Autonomous Entities 
As the basic elements of an AOC system, autonomous entities achieve their 

respective goals by performing their primitive behaviors and complying with 
their behavioral rules. Through interactions, entities can self-organize them in 
order to achieve the system goal of problem solving or system modeling. Here, 
we define an autonomous entity as follows: 

Definition 4.3 (Autonomous entity) An autonomous entity e is a tuple ( S ,  3, 
G ,  B, R), where S describes the current state of entity e. 3 is an evaluation 
function. G is the goal set of entity e. B and R are primitive behaviors and 
behavioral rules, respectively. 

Based on the differences in S ,  3, G ,  B, and R, entities in an AOC system 
can be categorized into different classes. Before further description, let us 
define the neighbors of an entity. 

Definition 4.4 (Neighbors) The neighbors of entity e are a group of entities 
Le = {I f ,  15 , .  ., I ; ,  - - 0  le ), where NL is the number of neighbors. The ' NL 
relationship (e.g., distance) between each neighbor 1; and entity e satis-es 
certain application-dependent constraint(s). 

In different AOC systems, the neighbors of an entity can be fixed or dynam- 
ically changed. 
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At each moment, an entity is in a certain state. It, according to its behav- 
ioral rules, selects and performs its primitive behavior in order to achieve cer- 
tain goals with respect to its state. While doing so, it needs to interact with 
its neighbors or its local environment to get necessary information. In the fol- 
lowing, we will further describe the notions of state, evaluation function, goal, 
primitive behavior, and behavioral rule for an autonomous entity. 

Definition 4.5 (State) State S of autonomous entity e is characterized by a 
set of static or dynamical attributes, i.e., S = { s l ,  sa, . - . , si7 , srvs), where 
si E DSi and Ns denotes the number of attributes. Thus, Ds = D,, x D,, x 
. . x DSi x . . . x DsNs corresponds to the state space of entity e. 

As we have noted that in the AOC-based search (see Section 2.3), an au- 
tonomous entity is characterized by three dynarnical attributes, i-e., its position 
and age, as well as a flag for indicating whether or not it is active. 

Before an entity fires its behavioral rules to select its primitive behavior, it 
needs to assess its current condition, including its own internal state and/or 
those of its neighbors and environment. In some applications, while selecting 
its behavior, an entity needs to assess its choices, i.e., possible states at the next 
step. 

Definition 4.6 (Evaluation function) Autonomous entity e assesses its con- 
ditions using one of the following evaluation functions: 

Internal state: 
F : DS + R, 

State of environment: 
F : DES + R, 

Internal state and that of environment: 

a Internal state and those of neighbors. 

where R denotes the range of function F (e.g., the set of real numbers or 
integers). Ds is a Cartesian product of elements in a subset of {DSi) ,  i.e., 
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DS C DS. Similarly, D E s  is a Cartesian product, DEs C DES. 1; denotes 
the ith neighbor of entity e. S': and Dsl: denote the current state and the 

state space of entity 1; respectively. dSl: C Dsl;. n is the Cartesian product 
operatol: 

Note that in the above definition, we use DS, BES, and DSle, instead of DS, 
DES, and D le . This is because evaluation function F is basld on a subset of 

g.i 
attributes, w ich represents an autonomous entity as well as its neighbors and 
environment. 

Generally speaking, the primitive behavior of entities in AOC systems is 
goal directed. The goal of an entity is defined as follows: 

Definition 4.7 (Goal) An entity, e, can be engaged in a set of goals over time, 
as denoted by 6 = {gl , g2, - - . , gi, , g ~ ,  ), where NG denotes the number 
of goals. Each goal gi is to achieve a certain state S' such that evaluation 
function F takes a certain predejined value a ,  i.e., gi = {S'IF(-) = a ) ,  
where a is a constant. 

In an AOC system, at a given moment each entity e usually has only one goal 
and all entities may share the same goal. Although the primitive behavior of 
autonomous entities is goal directed, entities do not explicitly know the global 
goal of the whole system and the task that the system is performing. 

Definition 4.8 (Primitive behavior) An entity, e, can pegorm a set of primi- 
tive behaviors, B = {bl, b2, - - , bi, . . . , bNB), where NB denotes the number 
of primitive behaviors. Each primitive behavior bi is a mapping in one of the 
following forms: 

Self-reproduce: 
bi : e + e m ,  

which is a reproduction-like behaviol: It denotes that entity e replicates 
itself m times (i.e., breed m offspring); 

= Die: 
bi : e + a ,  

which denotes that entity e vanishes from the environment; 

Change internal state: 
b i :  DS + DS, 

Change state of environment: 
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Change internal state and that of environment: 

bi : IjS x IjES + DS x DES7 or (4.10) 

rn Change internal state and those of neighbors: 

where DS, DES. D~)sI;, and n have the same meanings as those in Defmi- 
tion 4.6. 

Definition 4.9 (Behavioral rule) The behavioral rule set for entity e is R = 
{TI, 7-2, - . . , Ti7 - . + , T N ~ ) ,  where NR denotes the number of rules. Each be- 
havioral rule Ti is to select one or more primitive behaviors to pegorm. Be- 
havioral rules can be classijied into two types: 

Evaluation-based rules: 

where Ran(F) denotes the range of evaluationfunction F. B C B. (8) C 
oI3 

rn Probability-based rules: 

where each subset B is assigned a probability, pd, which may be fued or 
dynamically changed over time. This type of rule probabilistically selects a 
set of primitive behaviors from B. 

For example, in the AOC-based feature search and extraction, an autonomous 
entity has four primitive behaviors, namely, breeding, pixel labeling, diffusion, 
and decay. At each step, it chooses to breed some offspring and label its cur- 
rent position, or diffuse to another position and decay, based on the assessment 
of its neighboring region. Here, the behavioral rule is evaluation-based. 
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4.2.3 System Objective Function 
As a global measurement for the performance of an AOC system, system 

objective function 9 guides the system to evolve towards certain desired states 
or patterns. 

Definition 4.10 (System objective function) In an AOC system, system ob- 
jective function 9 is dejined as a function of the states of some entities. In 
different applications, 9 can be categorized into two types. Let {ei) be a 
group of entities. 

State-oriented function: 

where ~ ~ e k  is a subset of the state space, D s e k ,  of entity e k ,  R is the set of 
real numbers or integers, and m denotes the dimensionality of the space of 
9 .  

Process-oriented function: 

where {-In denotes a series of multiplications of the elements inside the 
braces. 

It should be pointed out that 9 is usually a nonlinear function. In the above 
definition, the first type of 9 concerns the state of an AOC system, which 
is measured with an m-dimensional vector. Specifically, the system aims at 
certain desired states. With the second type of 9 ,  an AOC system is intended 
to exhibit certain desired characteristics or patterns in its evolutionary process. 

4.3. lnteractions in an AOC System 
The emergent behavior of an AOC system originates from the interactions 

among the elements of the system. This section addresses the interactions in an 
AOC system. Generally speaking, there are two kinds of interaction, namely, 
(1) interactions between autonomous entities and their environment and (2) 
interactions among entities. 

4.3.1 lnteractions between Entities and their Environment 
The interactions between an autonomous entity and its environment can be 

described through the state changes in the environment, as caused by the prim- 
itive behavior of the entity. 
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Definition 4.11 (Interactions between an entity and its environment) The 
interactions between entity e and its environment E are modeled as a sequence 
of mappings {ZeE),  where ZeE has one of the following forms: 

where '-+bi ' indicates that ZeE is in fact a primitive behaviol; bi, of entity 
el by peforming which entity e can change the state of its environment (see 
Definition 4.8, Equations 4.9 and 4.10). 

Figure 4.1 presents a schematic diagram of the interactions between two 
entities e~ and e B  and their environment E. 

4.3.2 Interactions among Entities 
Different AOC systems may have different fashions of interactions among 

their entities. The interactions among entities can be categorized into two 
types: direct and indirect. Which type of interaction will be used in an AOC 
system is determined by specific applications. 

Direct interactions are implemented through either direct state information 
exchanges among entities, or direct effects of the primitive behavior of one 
entity on the states of others. In an AOC system with direct interactions, each 
entity can interact with its neighbors. Figure 4.2 presents a schematic diagram 
of the direct interactions between two entities e~ and eg.  

Definition 4.12 (Direct interactions among entities) The direct interactions 
between entities e A  and eg are modeled as a sequence of mapping tuples 
{ ( Z A B ~ Z B A ) ) ,  

and 
ZBA : D S B  x D S A  + b ~  D S B  x D S A 7  (4.19) 

where 'db~'  and ' j b ~ '  denote that ZAB and ZBA are two primitive be- 
haviors of entities e A  and e ~ ,  respectively, which are related to the states of 
neighboring entities. Here, if we take eA and eg as neighbors of each othel; 
we can regard that ' j b ~ '  and ' + b ~ '  are originated from Equation 4.11 in 
Definition 4.8. D S A  and D s B  are subsets of the state spaces of entities eA and 
e ~ ,  respectively. 

Indirect interactions are carried out through the environment of entities that 
functions as a communication medium. There are two phases involved in such 
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Entityt en , ! ', f I 

Figure 4.1. Interactions (i.e., the dashed lines) between two entities eA and eB and their 
environment E, which are caused by primitive behavior (i.e., b( t ) ) .  The solid lines denote the 
state changes in entities and their environment. 

interactions: (1) Through the interactions between an entity and its environ- 
ment, the entity 'transfers' its information to the environment; (2) Other en- 
tities (e.g., local neighbors) will sense and evaluate such information, and act 
accordingly. 

Definition 4.13 (Indirect interactions among entities) The indirect interac- 
tions between entities e A  and e B  are modeled as a sequence of mapping tuples 
{(ZAE, ZBE)),  where interaction ZAE between entity e~ and environment E 
occurs before interaction ZBE between entity e~ and environment E. That is, 

H At time t: 
Z A ~  : DES + b ~  DES, or (4.20) 
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Neighbor: 1, I 

Figure 4.2. Direct interactions (i.e., the dashed lines) between entity e and its two neighbors, 
namely, entities 11 and 12. The solid lines denote the state changes in the three entities as caused 
by their primitive behaviors. 

At time t': 

where t < t'; ' + b ~  ' and ' + b ~  ' denote that ZAB and ZBA are two primitive 
behaviors of entities e~ and e ~ ,  respectively; DSA C DSA and D S B  C DSB, 

where D S ~  and Dss are the state spaces of entities eA and e ~ ,  respectively. 
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4.4. Remarks on Homogeneity, Heterogeneity, 
and Hierarchy of Entities 

In what follows, we will discuss issues as related to the homogeneity, het- 
erogeneity, and hierarchy of entities in an AOC system. 

Based on our preceding descriptions, we can readily define entities in spe- 
cific applications to be homogeneous or heterogeneous in terms of their similar 
or different goals, behaviors, behavioral rules, interactions etc.. As we have 
seen in the AOC-based problem solving (in Section 2.2) and learning (in Sec- 
tion 2.4), the entities are homogeneous, because they have the same goals and 
primitive behaviors. In the AOC-based image segmentation (in Section 2.3), 
the entities in different classes can be regarded as heterogeneous. In a real- 
world application, entities are designed to be homogeneous or heterogeneous 
according to the features of the problem at hand. 

In the AOC-based examples of Chapter 2 as well as the examples that will 
be illustrated in Chapters 5, 6, and 7, the autonomous entities are modeled at 
the same level. In other words, their behaviors and interactions are modeled at 
the same level. In order to be consistent with those examples, our definitions 
in the previous sections do not mention the issue of hierarchy in entities. 

However, in an AOC system, entities can also be modeled at different lev- 
els. In other words, entities may be organized in a hierarchical manner. En- 
tities at different levels have different goals, behaviors, behavioral rules etc. 
Their interactions with others may have different effects to the whole system, 
according to some specific requirements. Entities can also be statically or dy- 
namically formed into different groups. The entities in the same group have 
common goals and behavioral rules, and behave as a whole to interact with 
other groups or individual entities. In this book, we will not extend our discus- 
sions to this case. 

4.5. Self-organization in AOC 
In an AOC system, self-organization plays a crucial role. In this section, we 

will introduce the notion of self-organization and show how self-organization 
is utilized to achieve the goal of an AOC system. 

4.5.1 What  is  Self-organization? 

The term "self-organization" was first introduced by Ashby in 1947 [Ashby, 
1947, Ashby, 19661. The phenomenon of self-organization exists in a variety of 
natural systems, such as galaxies, planets, compounds, cells, organisms, stock 
markets, and societies [Bak, 1996, ~ n s a l ,  1993, Lucas, 19971. It is involved in 
many disciplines, including biology, chemistry, computer science, geology, so- 
ciology, and economics [Liu, 2001, Bak, 1996, Kauffman, 19931. Several the- 
ories have been developed to describe self-organizing systems. They include 
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the dissipative structure theory of Prigogine [Nicolis and Prigogine, 1977, Pri- 
gogine, 19801 and the synergetics theory of Haken [Haken, 1983a, Haken, 
1983b, Haken, 19881. 

Generally speaking, a self-organizing system consists of two main elements: 
entities and an environment where the entities are situated. In a self-organizing 
system, entities are autonomous and behave rationally according to their be- 
havioral rules. There is no explicit external control on the system, i.e., it is not 
governed by external rules. 

The behavior of entities in a self-organizing system can be generalized into 
three steps [~nsa l ,  19931. First, entities sense the environment or receive sig- 
nals from other entities. Secondly, based on the information received, entities 
make rational decisions on what to do next. Finally, entities behave according 
to their decisions. Their behavior will in turn affect the environment and the 
behavior of other entities. By following these three steps, an entity carries out 
its interaction with its environment or other entities. 

The essence of a self-organizing system lies in interactions among its enti- 
ties and the environment [Kauffman, 1993, Nicolis and Prigogine, 1977, Pri- 
gogine, 19801. Through interactions, a self-organizing system can aggregate 
and amplify the outcome of entity behavior. Consequently, it eventually ex- 
hibits certain emergent behaviors or patterns. 

An emergent behavior or pattern in a self-organizing system may correspond 
to a solution of a certain problem. By virtue of self-organization, researchers 
have proposed some methods for solving practical problems. Introducing the 
idea of self-organization into neural networks is a successful example. Self- 
organization methods have also been demonstrated in various applications, 
such as image feature extraction as described in [Liu et al., 19971. In the 
following section, we will see that self-organization is the fundamental mech- 
anism of an AOC system. 

For more details on self-organization and self-organizing systems, readers 
are referred to [Liu, 2001, Bak, 1996, Ashby, 1966, Haken, 1983a, Haken, 
1983b, Haken, 1988, Kauffman, 1993, Nicolis and Prigogine, 1977, Prigogine, 
19801. 

4.5.2 How Does an AOC System Self-organize? 
How does an AOC system self-organizes so that it can solve some hard com- 

putational problems (e.g., n-queen problems, image segmentation, and global 
optimization) and exhibit complex behavior (e.g., the surfing behavior of users 
on the Internet)? The key lies in the self-organization of its autonomous enti- 
ties, from which all emergent behaviors originate. 

In order to achieve their respective goals, individual entities autonomously 
make decisions on selecting or performing their primitive behavior. While se- 
lecting or performing primitive behavior, they need to consider not only the 
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information of their own states, but also that of their neighbors and their en- 
vironment. To do so, they will either directly interact with each other, or 
indirectly interact via their environment, to exchange their state information 
or affect the states of each other. By performing behaviors, entities change 
their states towards their respective goals. Because autonomous entities take 
into consideration the states of others while behaving, from a global point of 
view, entities aggregate and amplify the outcome of their behaviors in order to 
achieve the global goal of the system. 

Let us take the AOC-based search (see Section 2.3) as an example to demon- 
strate the process of self-organization. In this example, an entity tries to find a 
pixel that belongs to a certain homogeneous region. At such a pixel, its eval- 
uation value will be better than those at other pixels. On one hand, when an 
entity finds a desired pixel, it will reproduce some offspring within its local 
environment, where the offspring will most probably find other desired pixels. 
This mechanism acts as positive feedback, through which the AOC system ag- 
gregates and amplifies the successful behavioral outcome of entities. On the 
other hand, if an entity cannot find a desired pixel after predefined steps, i.e., its 
lifespan, it will be deactivated. Through this positive feedback mechanism, the 
AOC system eliminates those entities with poor performance. From a global 
point of view, we can note that at the beginning steps, few entities can success- 
fully find the desired homogeneous region. As the search progresses, more 
entities which are either reproduced or diffusing are able to locate pixels of a 
homogeneous region that has been found. This nonlinear process will continue 
until it achieves a state where all active entities stay in a certain homogeneous 
region. Hence, the whole AOC system is globally optimized. 

Figure 4.3 shows a schematic diagram of the process of self-organization in 
an AOC system. In general, we can define the process of self-organization as 
follows: 

Definition 4.14 (Self-organization of entities) The process of self- 
organization of entities {ei) in an AOC system is a sequence(s) of state transi- 
tions {{SF)lt = 0, . . . , T) ,  which is subject to the following two constraints1 : 

I .  Locally, for each entity ei, 

where F(SF) returns the evaluation value of entity ei 's state at time t; 
Pr(.) returns a probability; F(S&) - .F(Stei ) + 0, i.e., F(S f i l )  > 
F(Sfi) ,  denotes that the new state of entity ei at time t + 1 is 'better' 
(say, higher) than the one at time t. 

 h he number of entities, i.e., I{ei} I, during the process of self-organization may vary over time. 



A Formal Framework of AOC 

The Initial State (t=O, entities are randomly initialized) 

Figure 4.3. The process of self-organization in an AOC system. The dash-dotted line denotes 
the outcome aggregation of entity behaviors on the states of entities and that of their environ- 
ment. 

2. Globally, for the whole system, 

where at and denote the value vectors of system objective finction 
at time t and t + 1, respectively. at+l - at F 0 means that the system 

evolves to a better state at time t + 1. 

Given the above local and global constraints, the AOC system eventually 
reaches a state where 

@T = Opt(@t), (4.26) 

where Opt(.) returns an optimal value of the system objective finction. 

In the above definition, the local constraint indicates that autonomous en- 
tities probabilistically evolve to better states at each step, although for some 
entities this may not hold. The global constraint reflects that the whole AOC 
system also probabilistically evolves to a better state in ten& of its system 
objective function a at each step. 
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What we should point out is that due to the nonlinear interactions in the AOC 
system, the process of self-organization will exhibit nonlinear characteristics. 
That is, (1) the system objective function for evaluating the states of entities is 
usually nonlinear, and (2) Pr - at + 0) increases with t. That means 
the system evolves to better states with a higher and higher probability over 
time. This evolution process is also nonlinear. Equation 4.26 states that the 
whole AOC system eventually approaches a global optimal state. 

Based on the earlier definitions of an AOC system, entities, environments 
etc., we can further formulate AOC as follows: 

Definition 4.15 (Autonomy oriented computing) Autonomy oriented comput- 
ing (AOC) is a process involving the following steps: 

Step I .  Initially, design an AOC system ( { e l ,  ea, - - - , ei, - - , e ~ ) ,  E ,  a), in 
particulal; 

For the environment, design its internal states IS;  

For each entity, design its internal states S, evaluation function F, 
goals (7, behavior set i3, and behavioral rule set R; 
Design system objective function 9. 

Step 2. Determine the desired 'value' 9* of system objective function <P. 

Step 3. Execute the designed AOC system, and then evaluate the current 'value' 
at. 

Step 4. Dejine an optimization function \E = 19' - @ * I  as a guidance for 
autonomy oriented computing. 

Step 5. If il? is not optimized, modify or jine-tune the parameters of entities 
or the environment according to @. In problem solving, 'optimized' 
means the system parameters are well set and the AOC system can 
successfully and eficiently jind a solution to the problem. In system 
modeling, 'optimized' means the prototyping system can actually sim- 
ulate the system to be modeled. 

Step 6. Repeat the above steps until \E is optimized. 

4.6. Summary 
For an AOC system, autonomous entities and an environment are its key 

elements. Interactions between entities and their environment are the force 
that drives an AOC system to evolve towards certain desired states. Self- 
organization is the essential process of its working mechanism. 1n this chapter, 
we have formally defined the above notions as well as their intentions, and 
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have provided a general framework for an AOC system. Based on the frame- 
work, we know how to build an AOC system, given a problem to be solved or 
a complex system to be modeled. Specifically, we have better knowledge of: 

1. How to formally characterize autonomous entities? 

2. How to design and characterize an environment based on a task at hand? 

3. How to design the interactions between autonomous entities and their en- 
vironment in order to facilitate the aggregation of behavioral effects of en- 
tities? 

4. How to design the primitive behaviors and behavioral rules of entities in 
order to achieve the self-organization of entities and emerge certain desired 
states or patterns? 
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Exercises 
4.1 In this chapter, autonomous entity e is defined as a 5-tuple, i.e., e = 

(S, F, G, B, R). Explain whether or not these 5 parameters are sufficient 
to characterize an autonomous entity. 

4.2 This chapter presents a probability-based definition of self-organization in 
an AOC system. Give another formal or mathematical definition of self- 
organization based on your understanding. 

4.3 Chapter 2 has illustrated three examples on employing the ideas of AOC 
to tackle practical problems. For those examples, use the AOC framework 
presented in this chapter to: 

(a) Formulate their autonomous entities and environments in detail; 

(b) Identify their interaction types; 

(c) Identify and mathematically formulate the specific self-organizing 
mechanisms used. 

4.4 The AOC framework presented in this chapter is a general one. Take a 
step further to propose and develop specific frameworks for three AOC 
approaches by emphasizing their differences. 

4.5 Based on the presented general framework, describe some crucial steps 
that can influence the process of self-organization towards desired collec- 
tive behaviors. 

4.6 As we have stated in Section 4.4, entities may be modeled in a hierarchical 
manner. Extend the AOC framework presented in this chapter to a case, in 
which entities are hierarchically organized. 
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AOC IN DEPTH 



Chapter 5 

AOC in Constraint Satisfaction 

In Part I, we have described the key concepts, approaches, and framework of 
autonomy oriented computing (AOC). In the following three chapters, we will 
present and discuss three representative examples, which respectively corre- 
spond to the three AOC approaches as introduced earlier. By doing so, we aim 
to demonstrate how AOC can be engineered and evaluated in tackling practical 
problem solving and complex systems modeling tasks. 

5.1. Introduction 
In the real world, many challenging problems, such as e-learning in Section 

5.1.1, are distributed in nature. Such problems cannot be solved in a cen- 
tralized fashion. Instead, they require certain distributed computing mech- 
anisms. AOC-by-fabrication attempts to provide a multi-entity based, dis- 
tributed methodology for solving naturally distributed problems. In this chap- 
ter, we will take constraint satisfaction problems (CSPs) and satisfiability prob- 
lems (SATs) as examples to demonstrate how the AOC-by-fabrication approach 
can be used. At the same time, we will highlight the key features of this ap- 
proach. 

The AOC-by-fabrication approach is designed by following some abstracted 
models of natural systems. Work in the field of artificial life (ALife) provides 
a basis for such an endeavor, as the definition of ALife indicates: 

"The study of man-made systems that exhibit behavior characteristic of nat- 
ural living systems" [Langton, 19891. 

". . .a  field of study devoted to understanding life by attempting to abstract 
the fundamental dynamical principles underlying biological phenomena, and 
recreating these dynamics in other physical media, such as computers, making 
them accessible to new kinds of experimental manipulation and testing" [Lang- 
ton, 19921. 



58 AUTONOMY ORIENTED COMPUTING 

Some well-known instances of ALife include visual arts [Sims, 19911, L- 
System [Prusinkiewicz et al., 1997, Prusinkiewicz and Lindenmayer, 19901 
and Tierra [Ray, 19921. These systems are intended to replicate some natural 
behaviors. 

In this chapter, we will describe the steps in formulating and implementing 
the AOC-by-fabrication approach to solving computationally hard problems. 
Specifically, we will focus on a novel self-organization based method, called 
ERE, for solving constraint satisfaction problems (CSPs) [Kumar, 1992, Nadel, 
19901 and satisfiability problems (SATs) [Folino et al., 2001, Gent and Walsh, 
19931, The ERE method involves a multi-entity system where each entity can 
only sense its local environment and apply a probability-based behavioral rule 
for governing its primitive behaviors, i.e., movements. The two-dimensional 
cellular environment records and updates the local values that are computed 
and affected according to the primitive behaviors (i.e., movements) of au- 
tonomous entities. 

In solving a CSP or SAT with the ERE method, we first divide variables into 
several groups, and then represent each variable group with an entity whose 
possible positions correspond to the elements in the Cartesian product of vari- 
able domains. Next, we randomly place each entity onto one of its possible po- 
sitions. Thereafter, the ERE system will keep on dispatching entities to choose 
their movements until an exact or approximate solution emerges. Experimen- 
tal results on classical CSPs, i.e., n-queen problems, and some benchmark SAT 
testsets have shown that the ERE method can efficiently find exact solutions to 
n-queen problems, and can obtain comparable as well as stable performances 
in solving SATs. Particularly, it can find approximate solutions to both n-queen 
and SAT problems in just a few steps. 

Many problems in Artificial Intelligence (AI) as well as in other areas of 
computer science and engineering can be formulated into CSPs or SATs. Some 
examples of such problems include: spatial and temporal planning, quali- 
tative and symbolic reasoning, decision support, computational linguistics, 
scheduling, resource allocation and planning, graph problems, hardware de- 
sign and verification, configuration, real time systems, robot planning, block 
world planning, circuit diagnosis, vision interpretation, and theorem proving. 
Here, we take e-learning as an example to show how a practical problem is 
translated into a CSP. 

e-learning is a technology used to provide learning and training contents to 
learners via some electronic means, such as computers, Intranet, and Internet. 
Essentially, it bridges the minds of instructors and learners with IT technolo- 
gies. Contents are usually structured into different modules, called learning 
objects, at different granularities, such as fragments (e.g., picture, figure, table, 
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text), lessons, topics, units, courses, and curricula [Loser et al., 2002, IEEE, 
2001, IEEE, 20021. The reason for doing so is to increase the interoperabil- 
ity and scalability of an e-learning service environment [Loser et al., 20021. 
Learning objects are located on different, usually geographically distributed, 
computers. Several smaller granular objects can constitute a bigger granu- 
lar object. Generally speaking, there are two important types of relationship 
among learning objects [Loser et al., 20021: content and ordering relations. 
A content relation describes the semantic interdependency among modules, 
while an ordering relation describes the sequence for accessing modules. In 
an e-learning service, these relations actually act as content constraints that 
should be satisfied during the service time. 

In addition to the above mentioned content and ordering relations, an e- 
learning service can also involve system constraints that are related to the hard- 
ware and software of the service environment. Generally speaking, more than 
one learner can simultaneously access either the same or different contents. 
Learners are also geographically distributed. Although a learning object in an 
e-learning environment can be accessed by one or more learners each time, the 
number of learners is limited because of some specific factors, such as hard- 
ware bandwidth. Therefore, these factors play the roles of system constraints. 

Example 5.1 Figure 5.1 shows an illustrative e-learning service scenario, 
where four learners, A, B, C, and D, are accessing the e-learning service via 
clients connected to the service environment. The learners need to learn three 
knowledge modules, i.e., ml, m2, and m3, provided by three geographically 
distributed computers. The constraints in the environment are: 

1. Content constraint: To learn modules m2 and ms, module ma must be 
learned before module m3. 

2. System constraint: One module can serve at most two learners at any time. 

In order to successfilly provide services to the above learners simultaneously, 
the distributed clients should collaborate with one another in order to deter- 
mine a service sequence for each learnel: 

This collaborative service can be formulated as follows: For each learner 
L E {A, B, C, D), its client should coordinate with those of other learners in 
order to generate a combination {Si, S i ,  Si) of {1,2,3) (Vi, Si E {1,2,3)), 
which will be used as the sequence in which learner L accesses the knowledge 
modules. For example, if learner A is assigned a combination {2,3, I), it 
means learner A should access the three modules in a sequence of 2,3, and 1. 
The above mentioned constraints can be accordingly formulated as follows: 

1. VL E {A, B, C, D), S; E {1,2,3), and for i # j, S; # sL. 
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/ an e-learning environment \ 

Figure 5.1. A scenario where an e-learning environment provides services to four learners 
simultaneously. All learners need to learn three modules, where module ml is independent, 
while modules mz and m3 are dependent: Module ma has to be learned before module m3. At 
any time, each module can only be accessed by at most two learners. 

2. Content constraint: Y L  E { A ,  B, C', D}, if Si = 2 and Si = 3, then it 
should guarantee i < j. 

3. System constraint: W, j E {1,2,3), CLE(A,B ,C ,D?  T(S~ = j) 5 2, where 
T(.) is a Boolean function to test whether or not an Input proposition is true. 

With the above three constraints, we have actually formulated the collaborative 
service into a distributed CSP, where distributed clients are responsible for 
assigning values to the variables of their learners. 

5.1.2 Objectives 
Constraint satisfaction problem (CSP) and satisfiability problem (SAT) are 

two types of classical NP-hard problem. In this section, we will provide the 
formal definitions of CSP and SAT. 

Definition 5.1 (Constraint satisfaction) A constraint satisfaction problem 
(CSP), P, consists 08 
I .  AJinite set of variables, X = {xl,x2, 0 . .  ,xi,--. ,x,}. 

2. A domain set, containing aJinite number of discrete domains for variables 
i n X : D =  {D1,D2,-..,Di,.--,Dn),Vi E [l,n], xi E Di. 

3. A constraint set, C = {C(R1), C(R2), . - . , C(Ri), - - . , c(R~)), where 
each Ri is an ordered subset of the variables, and each constraint C(Ri) 
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0: queen 

Figure 5.2. A solution to a 4-queen problem. 

is a set of tuples indicating the mutually consistent values of the variables 
in Ri. 

Definition 5.2 (CSP Solution) A solution, S ,  to a CSP is an assignment to all 
variables such that the assignment satisjies all given constraints. SpeciJically, 

1. S is an ordered set, S = ( v l ,  v2, - . - , vi, . - . , v,), S E Dl x D2 x . . . Di x 
... x D,. 

2. Vi E [I, m], Si is an ordered value set corresponding to variables in &, 
and Si E S ,  Si E C(Ri ) .  

Below is a classical CSP example. 

Example 5.2 An n-queen problem is a classical CSI! It is generally regarded 
as a good benchmark for testing algorithms and has attracted attention in the 
CSP community [Sosic and Gu, 19941. This problem requires one to place n 
queens on an n x n chessboard, so that no two queens are in the same row, the 
same column, or the same diagonal. There exist solutions to n-queen problems 
with n 2 4 [Bitner and Reingold, 1975, Sosic and Gu, 19941 (see Figure 5.2). 
The equivalent CSP can be stated as follows: 

C={C(R, ) lV i , j  E [ l ,n] ,C(R, )  = {(b,c)IbE Di , cE  D j , b # c , i -  j # 
b - c , i -  j # c - b ) ) .  

Now, let us take a look at an SAT. Generally speaking, an SAT is to test 
whether there is (at least) one solution for a given propositional formula. 

Definition 5.3 (Satisfiability problem) A satisjabilityproblem (SAT), P, con- 
sists of: 

1. A jinite set of propositional variables, X = { x l ,  x2, . . - , X i ,  . . , x,). 
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2. A domain set, D = {Dl,  D2 , . . . ,D i , . . - ,Dn) ,  V i  'i [ l , n ] ,  xi 'i Di and 
Di ={True, False). 

3. A clause set, CL = {Cl (R1) , Cl ( R 2 ) ,  . . . , Cl (R i )  , . . . , Cl (R,)), where 
each R, is a subset of X, and each clause C1(&) is a disjunction of the 
literals corresponding to the variables in Ri. 

Definition 5.4 (SAT solution) A solution, S ,  to an SAT is an assignment to all 
variables such that, under this assignment, the truth values of all given clauses 
are true, i.e., 

I .  S  is an ordered set, S  = ( v  2 ,  , v - , ) V  € [ I ,  n], 
v i € { T r u e , F a l s e } , S €  Dl x D2 x - - - D i  x - . . x D , .  

2. V i  'i [ I ,  m], T(C1 (Ri)) = True, where T(.) is a function that returns the 
truth value of a clause. 

In [Gu, 19931, CSP and SAT were regarded as natural 'twins'. To some 
extent, we can consider SAT as a special type of CSP. In fact, for Definition 
5.3, we can readily change item 3 to 3': 

3'. A constraint set, C  = {C(R1) ,  C(R2) ,  . , C ( R i ) ,  - - . , C(R,)), where 
each RRi is a subset of X ,  and each constraint C(&)  is a set of truth as- 
signments to all variables in Ri, which satisfy T ( C l ( R i ) )  = True. 

Thus, we can see that SAT is indeed a special case of CSP. Later in this chapter, 
we will take this point of view to treat SAT, for the convenience of description. 

5.2. Background 
In this section, we will briefly survey conventional and self-organization 

based methods for solving CSPs and SATs. In addition, we will make a com- 
parison between these methods and our ERE method. 

5.2.1 Conventional Methods 
Conventional methods for solving CSPs can be classified into generate-and- 

test (GT) methods and backtracking (BT) methods [Kumar, 19921. A GT 
method generates each possible combination of variables systematically and 
then checks whether it satisfies all constraints, i.e., whether it is a solution. One 
limitation of this method is that it has to consider all elements of the Cartesian 
product of all the variable domains. In this respect, BT is more efficient than 
GT, as it assigns values to variables sequentially and then checks constraints 
for each variable assignment. If a partial assignment does not satisfy any of 
the constraints, it will backtrack to the most recently assigned variable and re- 
peat the process again. Although this method eliminates a subspace from the 



AOC in Constraint Satisfaction 63 

Cartesian product of all the variable domains, its computational complexity in 
solving most nontrivial problems remains to be exponential. 

There has been some earlier work on how to improve the above mentioned 
BT method. In order to avoid thrashing in BT [Gaschnig, 1979, Kumar, 19921, 
consistency techniques (Arc Consistency and k-Consistency) have been devel- 
oped by some researchers [Cooper, 1989, Han and Lee, 1988, Kumar, 1992, 
Mackworth, 1977, Mohr and Henderson, 19861. These techniques are able to 
remove inconsistent values from the domains of variables. In order to avoid 
both thrashing and redundant work in BT [Kumar, 19921, a dependency di- 
rected scheme and its improvements have been proposed [Bruynooghe, 1981, 
Kumar, 1992, Rossi et al., 1990, Stallman and Sussman, 19771. Other ways of 
increasing the efficiency of BT include the use of search orders for variables, 
values, and consistency checks. Nevertheless, even with such improvements, 
BT is still unable to solve nontrivial large-scale CSPs in a reasonable runtime. 

It should be mentioned that there are also some research efforts on making 
GT smarter. The representatives of such efforts are stochastic and heuristic 
algorithms. Along this direction, one of the most popular ideas is to perform 
local search [Gu, 19921. For large-scale n-queen CSPs, local search gives bet- 
ter results than a complete, or even incomplete, systematic BT method. 

Methods for solving SATs cover two main branches: systematic search 
methods and local search methods [Hoos and Stutzle, 19991. Systematic search 
is a traditional way for solving an SAT that, like a BT method for a CSP, as- 
signs values to partial variables and then checks whether there are some clauses 
unsatisfied. If this is the case, it will backtrack to a previous variable and as- 
sign it with another value, and then repeat this process. Otherwise, it will 
select a variable to branch until a solution is found or it finds that the problem 
is unsatisfiable. Such a method is complete because it guarantees to find out 
via search whether a given problem is satisfiable. Some examples of system- 
atic search are POSIT, TABLEAU, GRASP, SATZ, and REL-SAT [Hoos and 
Stutzle, 19991, all of which are based on the Davis-Putnarn (DP) algorithm 
[Davis et al., 19621. Algorithm 5.1 presents an outline of the Davis-Putnam 
algorithm. 

Local search first appeared in 1992 when Selman, Levesque, and Gu almost 
simultaneously proposed the idea [Selman et al., 1992, Gu, 19921. Generally 
speaking, local search starts with a complete and randomly initialized assign- 
ment, then checks whether it satisfies all clauses. If not, it will heuristically or 
randomly select a variable to flip (i.e., change its value). It repeats this process 
until a solution is found. Algorithm 5.2 presents an outline of a local search 
method. 

As can be noted from Algorithm 5.2, a local search method contains three 
key concepts [BartAk, 19981: 
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Algorithm 5.1 The Davis-Putnam algorithm. 
Input: SAT problem P (variable set X ,  clause set C), empty assignment S 
Procedure Davis-Putnam(P,S) 

Given S ,  do unit propagation on P ;  
if P is empty then 

Return S ;  
end if 
if P contains empty clause then 

Backtrack; 
end if 
Choose a variable, x, from X ;  
Davis-Putnam(P U v,S U v = True); 
Davis-Putnam(P U l v , S  U v = False). 

1. Configuration: one possible assignment to all variables, not required to be 
a solution; 

2. Evaluation value: the number of satisfied constraints (in a CSP) or clauses 
(in an SAT); 

3. Neighbor: a configuration obtained by flipping the assignment of a variable 
in the current configuration. 

Although local search has been demonstrated to outperfom systematic search, 
it is an incomplete method. That is to say, local search cannot prove that a given 
problem has no satisfying assignment. In addition, it cannot guarantee to find a 
solution for a satisfiable problem. Despite this, many improvements have been 
introduced to the local search method. There are two main streams: GSAT 
[Gu, 1992, Selman et al., 19921 and WalkSAT [Selman et al., 19941. They 
all have many variants, such as GWSAT [Selman et al., 19941, GSATlTabu 
[Mazure et al., 1997, Steinmann et al., 19971, HSAT [Gent and Walsh, 19931, 
and HWSAT [Gent and Walsh, 19951 following GSAT, and WalkSAT~Tabu 
[McAllester et al., 19971, Novelty [McAllester et al., 19971, and R-Novelty 
[McAllester et al., 19971 following WalkSAT. 

5.2.2 Self-organization Based Methods 
In the CSP literature, there exist two self-organization based methods. In 

[Kanada, 19921, Kanada provided a macroscopic model of a self-organizing 
system. In order to realize self-organizing computational systems, Kanada and 
Hirokawa further proposed a stochastic problem solving method based on local 
operations and local evaluation functions [Kanada and ~irokawa, 19941. They 
also gave a computational model, called Chemical Casting Model (CCM), and 



AOC in Constraint Satisfaction 65 

Algorithm 5.2 The local search algorithm. 
Input: SAT problem P (variable set X ,  clause set C), assignment S 
for i = 1 to Max-Cycles do 

Initialize assignment S ;  
for j = 1 to Max-Steps do 

if EvaEuation(S) = ICI then 
Return S ;  

else 
//Select a neighbor to move to; 
Choose a variable, x, from X ;  
Flip the value of x in S;  

end if 
end for 

end for 
Return 'no solution found'. 

applied it to some classical CSP problems, such as n-queen problems and graph 
coloring problems, to test their method. Another method was developed by Liu 
and Han, in which an artificial life model was implemented for solving large- 
scale n-queen problems [Liu and Han, 20011. Interested readers may refer to 
Section 2.2. 

Before we describe our AOC-based method, we should mention two re- 
lated examples of self-organizing systems, cellular automata [Gutowitz, 1991, 
Liu et al., 19971 and Swarm [Swarm, 19941, that had some influence on our 
method. Cellular automata are dynamical systems that operate in discrete 
space and time. Each position in the space is called a cell and the state of the 
cell is locally specified according to a set of behavioral rules. All cells are up- 
dated synchronously. A cellular automaton self-organizes in discrete steps and 
exhibits emergent complex properties if certain behavioral rules are employed 
locally[Liu et al., 1997, Shanahan, 19941. Swarm is a system for simulating 
distributed multi-entity systems. It involves three key components: a living 
environment, a group of entities with some behavioral rules, and a schedule 
for updating the environment and entities and for dispatching entity behaviors. 

5.2.3 ERE vs. other Methods 
As inspired by the previous models of cellular automata [Gutowitz, 1991, 

Liu et al., 19971, Swarm [Swarm, 19941, and the artificial life model in [Liu and 
Han, 20011, in this chapter we will present a new method for solving CSPs and 
SATs. The method is called ERE (Environment, Reactive rules, and Entities). 

Like cellular automata and Swarm, an ERE system relies on self-organization. 
In ERE, each entity follows its local behavioral rules, and as a result, the system 
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gradually evolves towards a solution state. From the point of view of solving 
a CSP, the ERE method may be regarded as an extended GT algorithm, some- 
what like local search. However, the main differences between ERE and local 
search can be summarized as follows: 

1. ERE evaluates a particular system state not by the number of dissatisfied 
constraints for the whole assignment as in local search, but by the num- 
ber of dissatisfied constraints for every value combination of each variable 
group. The values of system state evaluation are stored in the environment 
of an ERE system. 

2. Similar to cellular automata, entities in ERE can synchronously behave ac- 
cording to their behavioral rules, whereas local search is sequential. 

3. In local search, the neighbors of an assignment are restricted to those that 
are different from the current assignment only in the value of one variable. 
In ERE, the neighbors of an assignment can be different in the values of 
several variables. 

The following section will demonstrate that if there exists a consistent solution, 
the ERE system will be able to eventually find it. However, if there exists no 
exact solution that can satisfy all constraints, it will be able to generate an ap- 
proximate one. Furthermore, our experiments will show that ERE is efficient 
in finding both exact and approximate solutions to a CSP in few steps. Gen- 
erally speaking, it is more efficient than BT methods and more readily solves 
some classical CSPs than the local search algorithm. 

5.3. ERE Model 
Problem solving is a domain with which many multi-agent applications are 

concerned. These applications are aimed at tackling computational problems 
in a distributed setting. In many cases, the problems to be solved are inherently 
distributed in nature [Ferber, 19991. One way to formulate such problems is to 
treat them as distributed CSPs, as illustrated in Example 5.1. 

Yokoo et al. have proposed several algorithms (i.e., asynchronous back- 
tracking, asynchronous weak-commitment search, and multi-agent real-time- 
A* algorithm with selection) for solving distributed CSPs [Yokoo, 1995, Yokoo 
et al., 1998, Yokoo and Hirayarna, 1998, Yokoo and Hirayama, 2000, Yokoo 
and Kitamura, 19961. In these algorithms, agents are individual solvers for ob- 
taining partial solutions. One typical feature of these algorithms is that all of 
them are complete. In other words, they can examine whether or not a problem 
at hand is solvable. If this is the case, they can find all solutions of the prob- 
lem. Later, Silaghi et al. improved the work of Yokoo et al. by introducing 
a mechanism to check whether the message an agent receives is legal [Silaghi 
et al., 2001a, Silaghi et al., 2001b, Silaghi et al., 2001~1. 
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In this chapter, we will introduce an AOC-based method for solving general 
CSPs (including distributed CSPs). In our method, the domain of a CSP or 
its variant is represented into a multi-entity environment. Thus, the problem 
of finding a solution to a CSP is reduced to that of how a group of entities 
find a certain desired state by performing their primitive behaviors in such an 
environment. Like the other AOC-based methods, ERE exhibits several unique 
characteristics as well as advantages in tackling problems that involve large- 
scale, highly distributed, locally interacting, and sometimes unreliable entities. 

The notions of entity and multi-entity based ERE system can be defined as 
follows: 

Definition 5.5 (ERE Entity) An entity, a, in an ERE system is a virtual entity 
that represents one or more variables in a given problem. It essentially has the 
following abilities: 

I .  An ability to reside and behave (i.e., move around) according to a 
probability-based behavioral rule in a local environment as specijied by 
the domains of the variable(s) it represents; 

2. An ability to interact with its local environment; 

3. An ability to be driven by certain goals. 

Definition 5.6 (ERE system) An ERE system is a system that contains the fol- 
lowing elements: 

1. An environment, E, as specijied by the solution space of a problem at hand, 
in which entities reside; 

2. A set of reactive rules (including primitive behaviors and behavioral rules), 
R, governing the behaviors of entities and the interactions among entities 
and their environment. Essentially, they govern entities to assign values 
to their respective variables. In this sense, they are the laws of the entity 
universe; 

3. A set of ERE entities, E = { a l ,  az, . - . , ai, - - , a,), which represent all 
variable of the problem. 

This chapter will examine how exact or approximate solutions to CSPs can 
be self-organized by a multi-entity system consisting of E, R; and E. In other 
words, it will illustrate: 

Environment + Reactive rules + Entities e Problem solving 
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Figure 5.3. An illustration of the entity model in Example 5.3. 

5.3.1 General Ideas 
An ERE system is intended to provide a distributed CSP solver. In ERE, 

we divide variables into groups. Each group contains one or more variables. 
A set of entities are employed to represent variable groups. The Cartesian 
products of the domains corresponding to all variable groups constitute an en- 
vironment where entities reside. Therefore, each position of an entity indicates 
a value combination of the variables that it represents. An entity can move 
freely within a row and has its own primitive behaviors and behavioral rules. It 
tries to move to a position where the number of constraint violation is zero. We 
refer to such a position as zero-position (For more details, see Definition 5.7). 
The primitive behavior will locally determine how an entity moves and how the 
environment is updated. A solution state in ERE is reached when all entities 
(variable groups) can move to their zero-positions (consistent value combina- 
tions). In other words, a solution in ERE is specified by the positions of the 
distributed entities. 

In the following paragraph, we will use two examples to illustrate how our 
ERE method works. 

Example 5.3 A CSP is given as follows: 

In ERE, the above example can be modeled as follows: We divide variables 
into three groups, i.e., each group contains only one variable. A lattice repre- 
sents an environment, where each row represents the domain of a variable and 
the length of the row is equal to the size of the domain. In each row, there exists 
only one entity. In this case, the horizontal coordinate of an entity corresponds 
the value of a variable. As in Figure 5.3, there are three entities and they are 
all at zero-positions. The numbers encountered by these entities correspond to 
three values within the domains of the variables. Thus, Figure 5.3 corresponds 
to a solution state of S = (4,2,1) .  
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Figure 5.4. An illustration of the entity model in Example 5.4. 

Example 5.4 An SAT can be described as a special CSP as follows: 

D ={Dl ,  D2,  D3, D4) ,  Dl = D2 = D3 = D4 = {True, False). 

True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True 

Example 5.4 can be modeled in a similar way as Example 5.3. First, we 
divide the variables into two groups: { x l ,  x 2 )  and {x3 ,  x4 ) .  In this case, the 
Cartesian product of each variable group will be: {{True ,  T rue ) ,  {True,  
False), {False, T rue ) ,  {False, False)).  Next, we use one entity to rep- 
resent each variable group. The Cartesian product of the variable group will 
become the space for an entity to move around (see Figure 5.4). In Figure 5.4, 
there are two entities. Each entity will move within its respective row. The 
cells in a row correspond to the elements in the Cartesian product of a corre- 
sponding variable group. 

In Figure 5.4, the two entities are at zero-positions. Therefore, the positions 
of entities in Figure 5.4 correspond to a solution state of S = (True,  False, 
False, False) to the SAT problem in Example 5.4. 

From the above examples, we can arrive at a general model of ERE in solv- 
ing a CSP as follows: 

CSP {X(variables), D(domains), C(constraints) )+ Multi-entity system; 

D & C + Cellular environment & Updating rules; 

X + Entities (each entity represents a group of variable(s)); 

Solution + Positions of the entities. 
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5.3.2 Environment 
Generally speaking, if we divide n variables into u groups (each group may 

have a different number of variables), then an environment, E ,  has u rows 
corresponding to the variable groups. For all i E [ I ,  u], if we assume that rowi 
represents a variable group {xi17 xi2, . . . , xik),  then it will have IDil x Di2 x 
. . x Dik I cells. Each cell records two kinds of information: domain value and 

violation value. 

Definition 5.7 (Environment) An environment, E, in an ERE system can be 
defined as follows: 

I .  Size 

u rows @ u variable groups. 

Vi E [I, u], rowi e all possible value combinations of variables in 
@ Dil X Di2 X x Dik. 

Hence, rowi has 1 Dil x Di2 x . x Dik I cells. rowi = (cellli, ceL!2i, . . . , 
cell(lDil xDi2 ...xDihl)i). e ( j ,  i )  refers to the position of cellji. 

The size of E is xr=l (IDil x Di2 X - . X Dik 1 ) .  

2. Values 

Domain value: e ( j ,  i).value records the jth value combination in 
Dil x Di2 x - . . x Dik. 

Violation value: e ( j ,  i).violation records in the current state how 
many constraints are unsatisfied, which are related to variables in posi- 
tion e ( j ,  i). e ( j ,  i )  .violation = m means that there are m constraints 
unsatisfied, which include some variable(s) in position e ( j ,  i). The vio- 
lation value of a cell is dynamically updated, as entities keep on moving 
and their states are changing. After a movement by an entity, the vio- 
lation values are updated by applying an updating-rule, which will be 
described in Section 5.3.3. 

Zero-position: a zero position ( j ,  i )  has e ( j ,  i).violation = 0. That 
means all constraints, to which the variables of rowi are related, are 
satisfied. 

Now let us revisit Examples 5.3 and 5.4 based on the concepts of Definition 
5.7. 

Specifically, Figure 5.5(a) shows the position of an entity at (1,2).  Fig- 
ure 5.5(b) shows the domains of three variables. row1 represents values in 
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Figure 5.5. An illustration of the ERE method in Example 5.3. (a) The position of an entity; 
(b) the representation of domain values; (c)-(d) violation values marked in the environment. 

domain Dl = {1 ,2 ,3 ,4 ,5 ,6 ) ,  row2 represents D2 = {1 ,2 ,3 ,4 ) ,  and row3 
represents D3 = {1,2 ,3 ,4 ,5) .  Figure S.S(c) shows that if entity a1 stays at 
(3 ,  I ) ,  meaning x1 = 3, according to constraints xl  # x2 and xl  > x3, it will 
violate x2 = 3, x3 = 1, x3 = 2, and x3 = 3. Therefore, it will contribute one 
to the violation values at positions ( 3 , 2 ) ,  (1 ,3 ) ,  (2 ,3 ) ,  and (3 ,3) .  Figure S.S(d) 
presents a snapshot for the state of the ERE system with the violation values. 
Since all entities are at zero-positions, a solution is found. 

In Example 5.4, we have divided 4 variables into 2 groups: { x l ,  x 2 )  and 
(23, x4 ) .  The Cartesian product of each group is { { T r u e ,  T r u e ) ,  {True ,  
False),  {False,  T r u e ) ,  {False ,  False)) .  Figure 5.6(a) shows the domain 
value of each cell in Example 5.4. If entity a1 stays at ( 1 , l )  (Figure 5.6(b)), 
it means xl  = T r u e  and 2 2  = True .  According to the constraint set, 
if entity az, for representing variables x3 and x4, stays at (1 ,2 ) ,  constraint 
T ( l x l  V 1x2 V 1 x 3 )  = T r u e ,  which is constructed by variables xl  and x2 in 
group { x l ,  x 2 )  and variable x3 in group { x 3 ,  x 4 ) ,  will be violated. If a2 stays 
at (2 ,2 ) ,  two constraints, T ( 1 x 2  V 1x3 V x 4 )  = T r u e  and T ( l x l  V 1x2 V 
1x3)  = T r u e ,  will be violated. If a2 stays at (3 ,2 ) ,  it will violate constraint 
T ( 7 x l  V 1x2 V x 3 )  = True .  Furthermore, if a2 stays at (4 ,2 ) ,  constraint 
T ( l x l  V 7 x 2  V 2 3 )  = T r u e  will be violated again. Therefore, the violation 
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X,, X, 11 a1 

Figure 5.6. An illustration of the ERE method in Example 5.4. (a) The representation of 
domain values; (b) violation values if entity a1 is placed on (1, 1); (c) violation values of the 
whole environment. 

values of cells in row2 are 1,2,1,  and 1, respectively. Figure 5.6(c) presents a 
snapshot for the state of the ERE system with the violation values. Since there 
are two entities at positions with violation value 1, it is not a solution state. 

5.3.3 ERE Entities 
All entities inhabit in an environment, in which their positions indicate the 

value combinations of a variable group. During the operation of the ERE sys- 
tem, entities will keep on moving, based on their primitive behaviors and be- 
havioral rules. At each step, the positions of entities provide an assignment 
to all variables, whether it is consistent or not. Entities attempt to find better 
positions that can lead them to a solution state. 

Below is a summary of the main policies concerning entity modeling in 
ERE: 

1.  Vi E [ I ,  u], ai represents a variable group, {x i l ,  xi2, . . . , xik) .  

2. Entities reside and behave in environment E. Entity ai can move only to its 
right or left in rowi, but not up or down. ai. j represents its x-coordinate, 
which corresponds to the jth value combination in Dil x Di2 x . . . x Dik. 
Therefore, the position of ai can be denoted as (ai. j, i). 

In ERE, we introduce function Q? to define the movement outcome of an 
entity. 

Definition 5.8 (Entity movement function) Entity movement finction Q? 
is a function that provides the following mapping: 
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\T.l ( j ,  i )  returns the x-coordinate of ai at its new position, after it moves from 
position ( j ,  i). Thus, the new position can be denoted as (\T.l(j, i ) ,  i). 

1. In any state of the ERE system, the positions of all entities indicate an as- 
signment to all variables. Vi E [ I ,  u ] ,  e(ai .j, i )  .value = ( v ~ I ,  V i 2 ,  . . . , vik),  
that means X i 1  = V i l ,  X i 2  = Vi2 ,  . - . , xik = vik. By returning the positions 
of all entities, we can obtain a complete assignment to all variables. If an as- 
signment satisfies all the constraints, i.e., Vi € [ I ,  u ] ,  e(ai. j, i).violation = 
0, it is a solution. 

4. ai can sense the local environment of rowi and perceive the violation value 
of each cell in rowi. It can find the minimum violation value. 

Here, we define a function @(i) for returning a position (x-coordinate) with 
the minimum violation value in rowi. 

Definition 5.9 (Minimum position) A minimum-position is position ( j ,  i )  
where i E [ I ,  u] ,  and tJj' E [ I ,  IDil x Di2 x - - x DikI], e ( j ,  i).violation 5 
e( j l ,  i).violation. 

Definition 5.10 (Minimum position function) Minimum positionfunction 
is afunction that returns thejrst minimum-position for entity ai in rowi: 

that is, @(i) = j, where ( j ,  i )  is a minimum-position, and Vj' E [ I ,  j ) ,  ( j l ,  i )  
is not a minimum-position. 

5. Each entity has its own primitive behaviors. As more than one primitive be- 
havior coexists, each primitive behavior is assigned a probability. Before an 
entity moves, it will first probabilistically decide the behavior to perform. 
In other words, the behavioral rule of each entity is probability-based. 

6. In what follows, we will describe three primitive behaviors of entities in an 
ERE system in detail. 

w Least-move 
An entity moves to a minimum-position with a probability of least-p. 
If there exists more than one minimum-position, the entity chooses the 
first one on the left of the row. This primitive behavior is instinctive in 
all entities. A least-move behavior can be expressed as follows: 

In this function, the result has nothing to do with the current position 
j, and the maximum number of computational operations to find the 
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position for each i is IDil x Di2 x - . . x Dik I. We use a special symbol 
to represent this movement: 

H Better-move 
An entity moves to a position, which has a smaller violation value than 
its current position, with a probability of better-p. To do so, it will 
randomly select a position and compare its violation value with that 
of its current position, and then decide whether or not to move to this 
new position. We use function Random(k), which complies with the 
uniform distribution, to get a random number between 1 and Ic. A 
better-move behavior can be defined using function Q-b: 

where r = Random(1 Dil x Di2 X - X Dik 1 ) .  
Although it may not be the best choice for an entity, the computational 
cost required for this primitive behavior is less than that of least-move. 
Only two operations are involved in performing this primitive behavior, 
i.e., producing a random number and performing a comparison. This 
behavior can easily find a position to move to, if the entity currently 
stays at a position with a large violation value. 

An entity moves randomly with a probability of random-p. random-p 
will be relatively smaller than the probabilities of selecting least-move 
and better-move behaviors. It is somewhat like random walk in local 
search. For the same reason as in local search, random-move is nec- 
essary because without randomized movements an ERE system will 
possibly get stuck in local optima, where all entities are at minimum- 
positions, but not all of them at zero-positions. In the state of local 
optima, no entity can move to a new position if using the behaviors 
of least-move and better-move alone. Thus, the entities will lose their 
chance for finding a solution if without any techniques to avoid getting 
stuck in, or to escape from, local optima. 
A random-move behavior can be defined using function Q-,: 

The above three primitive behaviors are elementary, simple, and easy to 
implement. We can combine these primitive behaviors to get,complex ones. 
We will discuss this issue in the later part of this chapter. 
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By performing a primitive behavior, an entity changes not only its own 
state (i.e., position), but also the state of its environment (i.e., the violation 
values). Assume that an entity moves from ( j l  , i )  to ( j 2 ,  i ) .  The violation 
values of the environment will be updated according to the following two 
updating rules: 

= Updating-rule 1: Remove-From ( j l  , i )  : 
For (Vil E [ l ,u] ) (Vj l  E [I, [Dill x Di12 x x Di,lcl]): 
If there are v constraints: (1) they are based on variables included in 
rowi and rowif and (2) their values are changed from false to true 
Then e ( j l ,  il).violation t e ( j l ,  il).violation - v. 

Updating-rule 2: Add-To ( j 2 ,  i ) :  
For (Vil E [I, u ] )  (Vjl E [ I ,  1 Dill x Di12 x . - . x Dilk I]): 
If there are v constraints: (1) they are based on variables included in 
rowi and rowil and (2) their values are changed from true to false 
Then e( j l ,  il).violation t e ( j l ,  il).violation + v. 

7. In an ERE system, the interactions between entities and their environment 
are carried out through the above three primitive behaviors. That is, each 
movement of an entity by performing any primitive behavior will change 
the violation values stored in the environment. These changes will in turn 
cause the movements of other entities. In this way, the indirect interactions 
among entities are implemented through their environment. 

8. The goal of each entity in an ERE system is twofold: (1) to find and stay at 
a zero-position and (2) through indirect interactions, to assist other entities 
to stay at zero-positions. Each entity, because it can only sense its local 
environment and cannot sense those of other entities, does not know what 
a solution is and what the whole system is to achieve. It simply behaves 
according to its own goal and behavioral rule. That is sufficient for solving 
a CSP, since if all entities stay at zero-positions, we have found an exact 
solution to the problem. 

5.3.4 System Schedule 
The multi-entity system described in this chapter is discrete in nature, with 

respect to its space, time, and state space. The system will use a discrete timer 
to synchronize its operations, as illustrated in Figure 5.7. 

step = 0: 

The system is initialized. We place u entities onto the environment, a1 in 
rowl, a2 in row2, . . , a, in row,. The simplest way to place the entities is 
to randomly select positions. That is, for ai, we get a position of (Random( 
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0 1 2 3 time step 

Figure 5.7. Entity movements at different steps. 

1 Dil x Di2 x . - x Dik I), 2 ) .  The initialized positions may correspond to a 
solution as shown in Figure 5.5(d). 

step t step + 1: 

After initialization, the system will start to run. 

At each step, which means one unit increment of the system timer, all enti- 
ties have a chance to decide their movements, i.e., whether or not to move 
and where to move, and then move synchronously. It should be pointed out 
that in this chapter, we only concern with a simulation of the multi-entity 
system, which dispatches entities one by one. The order of dispatching 
does not influence the performance of the system. It may be based on a 
random or a predefined sequence. 

End: 

After the movements of entities, the system will check whether or not all 
entities are at zero-positions. If so, a solution state is reached. The system 
will stop and output the solution. Otherwise, the system will continue to 
dispatch entities to move in the dispatching order. 

We can also set a threshold t-max for the timer such that when the step 
reaches t-max, the system will stop and output an assignment of the current 
state, no matter whether or not it is a solution. Another way to terminate 
the operation is when q entities are staying at zero-positions. Obviously, 
these settings are for obtaining an approximate solution. 

Algorithm 5.3 shows the complete algorithm for an ERE system. 

5.3.5 Computational Cost 
In what follows, we will examine the space and time complexity of the ERE 

algorithm in solving CSPs and SATs. 

5.3.5.1 Space Complexity 

Theorem 5.1 The space complexity of the ERE algorithm is o ( c ~ = ~  IDil x 
Di2 x . . . x Dikl). 
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Algorithm 5.3 The ERE algorithm. 
step = 0; 
Initialize positions and behavior probabilities of entities; 
Initialize domain values and violation values of environment; 
while true do 

for all Ui  E A do 
Probabilistically determine a primitive behavior, b, to perform; 
Perform primitive behavior b; 
New position (j", i) = (9 (ai. j, i), i); 
if current position (ai. j, i)  = (j" , i) then 

Stay; 
else 

ai .j = jtt; 
end if 

end for 
Update violation values of environment; 
if current state satisfies predefined stopping criterion then 

Output variable values corresponding to entity positions; 
break; 

end if 
step + +; 

end while 

Proof: The main contribution of this algorithm to space complexity is from 
domain value storage for all positions in the environment. Assume that we di- 
vide all variables into u groups and the ith variable group is {xil, m . . , xik). 
There will be 1 Dil x Di2 x - - - x Dikl positions that need to store their do- 
main values. Thus, it needs to store in total xy=l IDil x Di2 X - - - X Dikl 
domain values for the whole problem. Therefore, the space complexity is 
O(xy=l IDil x Di2 x . . . x Dikl). 

The above theorem can further lead to the following specialized theorem for 
solving SATs. 

Theorem 5.2 In solving an SAT problem, if n variables are equally divided 
into u groups, the space complexity can be reduced to 0 ( 2  ). 

Proof: If the variables are divided into u groups. There exist two cases, i.e., 
Mod(n, u) = 0 and Mod(n, u) # 0. 

Mod(n, u) = 0: In this case, the domain value sets corresponding to dif- 
ferent variable groups are the same. For example, assume x = {xl, x2,x3, 
x4), n = 4, and we equally divide it into two groups, {xl , x2) and {x3, x4). 
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The corresponding Cartesian products are the same, i-e., {{True, True), 
{True, False), {False, True), {False, False)). In other words, the do- 
main value sets corresponding to these two variable groups are {{True, 
True), {True, False), {False, True), {False, False)). Therefore, it 
needs to store only one domain value set. Because each domain value set 
has 2r:l elements, the space complexity is 0 (2r:l) . 

Mod(n, u) # 0: In this case, the first u - 1 variable groups have the same 
number of variables, But the uth variable group has fewer variables 
than the first u - 1 groups, i.e., Mod(n,u). For the first u - 1 variable 
groups, they only need to store one domain value set. The uth variable 
group needs to store its domain value set separately. Therefore, the space 
complexity is 0(2r21 + 2M0d(n7u)). Since 2M0d(n9u) < 2r21, the space 
complexity is still 0 ( 2  ). 

5.3.5.2 Time Complexity 

The time complexity of the ERE algorithm is mainly from two steps, i.e., 
the step to count the number of unsatisfied constraints or clauses and the step 
to select a position to move to. At these two steps, the time complexity is as 
follows: 

Theorem 5.3 The time complexity of the step to count the number of unsatis- 
jied constraints is O(m), where m is the number of constraints. 

Proof: To count the number of unsatisfied constraints the ERE algorithm 
needs to check all m constraints once. Thus, the time complexity is O(m). 

Theorem 5.4 The time complexity of the step to select a position to move to is 
O(m . IDil x Di2 x .. . x Dikl)- 

Proof: In the ERE method, there are three primitive behaviors for selecting a 
position to move to, i.e., random-move, better-move, and least-move. There- 
fore, there are three cases. First, in the case of random-move, the ERE algo- 
rithm only needs to randomly select a position, and then move to it without 
any other processes. Its time complexity is O(1). Secondly, in the case of 
better-move, the ERE algorithm randomly selects a position, and then evalu- 
ates this position. The time complexity to randomly select a position is O(1). 
To evaluate a position, the ERE algorithm needs to consider the values of all 
m constraints, that is, its time complexity is O(m). Therefore, the total time 
complexity is O(m). Thirdly, in the case of least-move, an entity must eval- 
uate all its positions and then select a position with the best evaluation value 
to move to. Assume that we divide all n variables into u groups and the ith 
variable group is {xil, xi2, - . - , xik), then there will be IDil x Di2 x . - a x DikI 
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positions to evaluate. The time complexity to evaluate one position is O ( m ) .  
Thus, the total time complexity is O ( m  - 1 Dil x Di2 x - . . x Dikl). From the 
above three cases, we can readily conclude that the time complexity to select a 
position to move to is O ( m  . 1 Dil x Di2 x . . x Dik 1). 

Corollary 5.1 In solving an SATproblem, if all variables are equally divided 
into u group, then the time complexity to select a position is O ( m  .2[21). 

5.4. An Illustrative Example 
In this section, we will walk through an example to show how to apply the 

ERE method to solve an SAT problem. 

Example 5.5 An SAT is given as follows: 

D ={Dl, 0 2 ,  0 3 ,  0 4 ,  D5), Dl = D2 = D3 = D4 = D5 = {True, False). 

True, 
Tru.e, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True, 
True 

In Example 5.5, SAT contains 5 variables and 15 clauses. First, we divide 5 
variables into 3 groups: { x l ,  x2) ,  (23, x4) ,  and {x5 ) ,  and use 3 entities, al ,  aa, 
and as, to represent them. Secondly, we model the variable domains as the en- 
vironment of entities. The domain values will be recorded as e ( j ,  i).value 
(see Figure 5.8(a)). After that, entities will be randomly placed onto differ- 
ent rows (see Figure 5.8(b)) and the violation values for all positions will be 
initialized according to the current positions of entities (see Figure 5.8(c)). 
Thereafter, the cycles of distributed entity movements start. In ERE, entities 
are dispatched in a random or predefined order. Here, we assume that the order 
is: a1 +- a2 + as. 
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(a) (b) (c)  

Figure 5.8. An illustration of the ERE method in Example 5.5. (a) Domain values; (b) an 
initialized state; (c) violation values. 

Figure 5.9. The first step in the ERE process. a l ,  a2, and a3 perform least-move, least-move, 
and random-move behaviors, respectively. 

Figure 5.10. The second step in the ERE process. a1 selects a better-move behavior, but fails 
to move. a2 performs a least-move. as also selects a least-move behavior, but fails to move. 

At the first step, with respect to the above dispatching sequence, the system 
first dispatches entity a1 to move. Entity a1 moves by performing a least-move 
behavior, K l ( 1 ,  1)  = 3. As a result, it moves to position ( 3 , l ) .  Entity a2 
takes a least-move too, from (2 ,2 )  to (1 ,2 ) .  And, entity a3 randomly moves 
from (1 ,3 )  to (2 ,3 )  (see Figure 5.9(b)). Then, the system checks whether this 
state is a solution state, and finds that all three entities are not at zero-positions. 
Therefore, it is not a solution state. 

At the second step, entity a1 selects a better-move, Q P l ( 3 ,  1) = 4. But 
because (4, l) .violation = (3, l) .violation = 1  (see Figure 5.10(a)), a1 fails 
to move. Hence, it stays at ( 3 , l ) .  Entity a2 selects a least-move behavior 
and moves from (1 ,2 )  to (3 ,2 ) .  Entity a3 also selects a least-move, but fails 
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to move. Hence, it stays (see Figure 5.10(b)). Next, the system finds that all 
entities are at zero-positions, which means it is at a solution state: 

a1 stays at position ( 3 , l )  =+ {xl = False, x2 = True ) ;  
a2 stays at position (3,2) =+ {x3 = False, x4 = True ) ;  
ag stays at position (2,3) =+ {x5 = False). 

Hence, the final solution is: X I  = False, x2 = True ,  x3 = False, x4 = 
True ,  and x5 = False. 

5.5. Experimentation 
In the preceding sections, we have described the ERE method. In this sec- 

tion, we will present several ERE experiments on n-queen problems and bench- 
mark SAT problems. We will also discuss some important issues related to 
ERE. 

In the experiments, we will initialize all entities with the same parameters 
random-p, least-p, and better-p (Vi E [l, u] ,  ai.random-p = random-p, ai .least- 
p = least-p, ai.better-p = better-p). 

5.5.1 N-Queen Problems 
Let us first examine the performance of the ERE method in solving n-queen 

problems. 

Experiment 5.1 This experiment examines how well the ERE system performs 
in the Jirst three steps. n={500,1000,1500,2000,2500,3000,3500,4000, 
4500,5000,5500,6000,6500,7000). The size of a variable group is 1. least- 
p:random-p = n. type = F ~ B L R '  (1 0 runs)(see Table 5.1). 

Observation 5.1 From Table 5.1, we note that: 

1. After initialization, nearly 10% of the entities stay at zero-positions (al- 
though this is not shown in Table 5.1). 

2. After the 1st step, nearly 80% of the entities stay at zero-positions. That 
means 80% of the assignments to variables can satisfy constraints. This 
result is very signijcant because it is obtained with just one step. 

3. After the 2nd step, nearly n - 23 entities stay at zero-positions. That means 
about n - 23 assignments to variables can satisfy constraints. In other 
words, only about 23 assignments cannot satisfy constraints. 

4. After the 3rd step, nearly n - 7 entities stay at zero-positions. This is a good 
approximate solution obtained in just three steps, no matte; how large n is. 

'It will be discussed in Section 5.6.1. 
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Table 5.1. Performance in the first three steps of ERE-based n-queen problem solving. 

Step I 2 3 

Number of entities Ratio of entities Number of entities 
n at zero-positions at zero-positions not at zero-positions 

Average 0.8 22.8 7.2 

5.5.2 Benchmark SAT Problems 
In order to examine the performance of ERE in solving SATs, we will run 

ERE on some benchmark problems from [SATLIB, 20001: uf100-430 and 
flat50-115. Hoos and Stutzle made an empirical evaluation of different local 
search algorithms for SAT [Hoos and Stutzle, 2000a1, and two of their testsets 
are uf100-430 and flat50-115. Uf100-430 is a subset of Uniform Random- 
3-SAT problems [SATLIB, 20001 where each clause of instances has exactly 
three literals randomly selected from 2n literals according to a uniform dis- 
tribution. (Here, we assume that there are n variables to construct instances.) 
Flat5O-115 is a subset of Flat Graph Coloring problems [SATLIB, 20001 where 
clauses may have a different number of literals. 

The ERE algorithm for SATs is slightly different from the one for n-queen 
problems. In SAT, we equally divide variables into several groups. In the 
following experiments, we tune the optimal parameter settings first, and then 
collect statistical results on uf100-430 and flat50-115. 

Experiment 5.2 This experiment aims at examining the effectiveness and ef- 
jiciency of the ERE method in solving benchmark SAT problems with exact 
solutions. The testset is a subset of Uniform ~ a n d o m - 3 - ~ ~ ~ ~ r ~ b l e m s :  uf100- 
430. It includes 1000 instances, and each instance contains 100 variables 



AOC i n  Constraint Satisfaction 83 

and 430 clauses. The size of a variable group is 4. least-p:random-p = 40. 
type = F 2 B L R  (100 runs). 

Experiment 5.3 This experiment addresses the efJiciency of the ERE method 
in solving benchmark SATproblems with exact solutions. The testset is a subset 
of Flat Graph Coloring problems: JEat50-115. It includes 1000 instances, and 
each instance contains 150 variables and 545 clauses. The size of a variable 
group is 3. least-p:random-p = 80. type = F 2 B L R  (100 runs). 

Table 5.2. Mean-movement(flip)-numbers in benchmark SATs. 

Algorithms uf100-430 JIat50-115 

GWSAT 6,532 
GSATRABU 4,783 
HWSAT 3,039 
WalkSAT 3,672 
Walks ATRABU 2,485 
Novelty 28,257 
R-Novelty 1,245 
ERE 2,950 

Observation 5.2 In the last row of Table 5.2, we have given our experimental 
results, i.e., the mean number of movements for entities to get solutions in 100 
runs and for 1000 different instances. Also in Table 5.2, we have shown some 
experimental data as given in [Hoos and Stiitzle, 2000~1. We note that: 

I. As compared to other popular algorithms in the SAT community, our ERE 
method presents comparable results on both testsets. 

2. For some algorithms in Table 5.2, their peij4ormances are not stable in dif- 
ferent testsets. For example, the perj4ormance of R-Novelty is the best in 
testset uf100-430, but in testsetJEat50-115. In this respect, our ERE method 
yields better results, i.e., it is stable in two different problem types. 

5.5.2.1 Fair Measurement 

One important issue that we should clarify is the rationale behind the com- 
parison between the movements in the ERE algorithm and the flips in other 
algorithms. In the algorithms listed in Table 5.2, the number of flips is an im- 
portant and commonly used index to evaluate the performance. 'Flip' means 
changing the value of a variable in a complete assignment f r o m : ~ r u e  to False,  
or from Fa l se  to True.  In the ERE method, a movement of an entity will 
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cause, in an extreme case, nlu variables to change their values. If we just 
consider the value changes that occur in the variables, the comparison in Ta- 
ble 5.2 is unfair to the other algorithms. In essence, what those algorithms 
actually count is how many steps they take to get a solution rather than the 
values changed (in the other algorithms, the number of steps is equal to the 
number of flips, because they are sequential). In this sense, the correct way to 
compare the ERE method and the other algorithms is to compare their steps. 
But, because the ERE algorithm as implemented in this chapter is a sequen- 
tial simulation of the actual ERE algorithm, we recorded the movements of all 
entities in Table 5.2 and compared them with the flips in the other algorithms. 
Although one movement may cause multiple flips, all these flips happen simul- 
taneously. Thus, it is fair in this case to compare movements with flips. 

5.5.2.2 Performance Evaluation 

In what follows, we will examine the performance of the ERE method in 
finding 'approximate' solutions to SATs. For an SAT problem, there are three 
possible answers: 'satisfiable', 'unsatisfiable', and 'unknown'. Here, we em- 
ploy the notion of an 'approximate' solution to include the case in which 
clauses are partially satisfied under a complete assignment to all variables. 
Through the following experiments, we will see that ERE is efficient in finding 
an 'approximate' solution in the first three steps. 

Experiment 5.4 This experiment examines how well the ERE method per- 
forms in the first three steps to jind approximate solutions. Testsets are jive 
subsets of Uniform Random-3-SAT problems: {u f 50, u f 100, u f 150, u f 200, 
u f 250). The testsets include 1000, 1000, 100, 100, and 100 instances, respec- 
tively. The number of variables ranges from 50 to 250, and the corresponding 
number of clauses from 218 to 1065. We give each instance 10 runs, and at the 
same time, we calculate the mean value for the number of satisjied clauses at 
each step in thejirst three steps (see Table 5.3). 

Experiment 5.5 This experiment examines how efJicient the ERE method is in 
jinding approximate solutions. Testsets are four subsets of Flat Graph Color- 
ing problems: { f lat50, f lat100, f lat200, f lat25O). Thejirst testset includes 
1000 instances. The last three testsets include 100 instances. The number of 
variables ranges from 150 to 600, and the number of clauses from 545 to 2237. 
We give each instance 10 runs, and calculate the mean value for the number of 
satisfied clauses at each step in thejirst three steps (see Table 54) .  

In Experiments 5.4 and 5.5, all instances are satisfiable. Let us see a special 
situation, that is, all instances are unsatisfiable. 
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Experiment 5.6 This experiment examines how ejficient the ERE method is in 
finding approximate solutions. In this experiment, as in Experiment 5.4, test- 
sets are from Uniform Random-3-SAT problems: {UU f 50, uu f 100, uu f 150, 
uu f 200, uu f 250). The other parameters are the same as Experiment 5.4 ex- 
cept that all instances in this experiment are unsatisfiable (see Table 5.5). 

Table 5.3. The number of satisfied clauses and its ratio to the total number of clauses in 
Experiment 5.4. Note: S-C is Satisfied Clauses. Ratio is the ratio between S-C and the total 
number of clauses. The same is true for Tables 5.4 and 5.5. 

Step I 2 3 

Testset S-C Ratio S-C Ratio S-C Ratio 

uf50 208 0.954 212 0.972 213 0.977 
uflOO 410 0.953 418 0.972 420 0.977 
uf150 615 0.953 628 0.974 630 0.977 
uf200 820 0.953 836 0.972 840 0.976 
uf250 1,016 0.954 1,036 0.972 1,040 0.977 

Table 5.4. The number of satisfied clauses and its ratio to the total number of clauses in 
Experiment 5.5. 

Step 1 2 3 
Testset S-C Ratio S-C Ratio S-C Ratio 
flat50 513 0.941 534 0.980 536 0.983 

Observation 5.3 From Tables 5.3, 5.4, and 5.5, we can observe that with the 
ERE method: 

1. We can get an approximate solution with about 94-95% satisfied clauses 
after the 1st step, no matter whether or not the instance is satisfiable. This 
is a better result than that of ERE in solving n-queen problems where about 
80% entities are at zero-positions. 

2. After the 2nd step, the number of satisfied clauses has increased rapidly. 
But, the amount of increase is different in the two diflerent. types of testset. 
The increase in Flat Graph Coloring is greatel: 
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Table 5.5. The number of satisfied clauses and its ratio to the total number of clauses in 
Experiment 5.6. 

Step I 2 3 
Testset S-C Ratio S-C Ratio S-C Ratio 

3. After the 3rd step, the ratio of satisfied clauses will reach 97-98% no matter 
whether or not the instance is satisfiable. 

Based on the above observation, we can say that ERE is efficient and robust. 

5.6. Discussions 
In this section, we will comment on some design and engineering issues as 

related to the ERE method. Also, we will highlight the distinct features of the 
ERE method, as compared to other CSP solving methods. 

5.6.1 Necessity of the Better-Move Behavior 
Generally speaking, in previous search algorithms, there are two types of 

flip: greedy flip (i.e., flipping will cause the steepest hill-climbing) and ran- 
dom flip. But, in our ERE method, there are three primitive behaviors: least- 
move, better-move, and random-move. That is to say, ERE has a new primitive 
behavior, i.e., better-move. Is it necessary? 

Although better-move and least-move may seem to be similar (i-e., to move 
to a position based on the violation value), they are essentially different. At 
each step, it would be much easier for an entity to use a least-move to find a 
better position to move to than to use a better-move. This is because a least- 
move checks all the positions within a row, whereas a better-move randomly 
selects and checks only one position. If all entities use only random-move and 
better-move behaviors, the efficiency of the system will be low, because many 
entities cannot find a better position to move to at each step. On the other hand, 
the time complexity of a better-move is much less than that of a least-move. 
Therefore, if we can find a good balancing point between a better-move and a 
least-move, we can greatly improve the performance. 

In ERE, we have found a way to balance these two behaviors. First, an 
entity will use a better-move to compute its new position. If it succeeds, the 
entity will move to the new position. If it fails, it will continue to perform some 
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further better-moves until it finds a successful better-move. If it fails to take all 
better-moves, it will then perform a least-move. But, the question that remains 
is how many better-moves before a least-move will be desirable. 

It is obvious that at the initialization step, many entities are not at 'good' 
positions, i.e., they are at positions with large violation values. In this case, 
the probability of using a better-move to successfully find a position to move 
to is high. But, as the process goes on, more and more entities will be at good 
positions. At this time, there will be less chance for an entity to move using a 
better-move behavior. 

In order to confirm the above proposition, we have further conducted two 
experiments. Our experimental results show that the ERE algorithm will yield 
the best performance if there are two better-moves before a least-move. More 
better-moves will increase the runtime. On the other hand, fewer better-moves 
cannot provide enough chance for entities to find better positions. Also, we 
find that a F2BLR behavior can obtain the best performance. Here, F2BLR 
means that at the first step, an entity will probabilistically select a least-move 
or random-move behavior to perform. If it chooses a least-move behavior to 
perform, it will have two chances to select a better-move before performing a 
least-move. However, this is the case for the first step only. 

5.6.2 Probability Setting 
Among three primitive behaviors in the ERE method, the least-move and 

better-move behaviors play important roles in the performance of ERE. How- 
ever, the random-move is still necessary, because if without random-move, i.e., 
random-p=0, the system may get stuck in local optima. 

Now, here is a question: how to set the probabilities for the three primitive 
behaviors in order to have the best performance of ERE? From Section 5.6.1, 
we can see that the better-move behavior occurs as a prologue of the least- 
move in the F2BLR behavior. In this case, the combination of better-move 
and least-move will have the same probability as a single least-move. There- 
fore, the most important probabilities are least-p and random-p. It is the ratio 
of least-p to random-p that plays an important role in the system. Our experi- 
mental results show that when the ratio is 1.5n for n-queen problems or about 
1 . 5 ~  for SAT problems, the performance of the ERE algorithm will be the best. 

5.6.3 Variable Grouping 
In the ERE method, we divide variables into groups. In the experiments 

given in Sections 5.5.1 and 5.5.2, we have divided variable into groups of an 
equal size, i.e., one variable forms a group in an n-queen problem, and four 
or five variables are grouped together in an SAT problem. Through the exper- 
iments, we note that how to partition variables is a very important factor in 
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the performance of the ERE algorithm. We have observed from some experi- 
ments that which variables should be placed into a group is a more important 
aspect than the size of a variable group. However, to date, how to partition the 
variables in an optimal way still remains unsolved. 

5.6.4 Characteristics of ERE 
In Sections 5.5.1 and 5.5.2, we have shown that the ERE method is efficient 

in finding an exact solution to n-queen problems, and more stable than other 
SAT algorithms. Also in these sections, we have seen that the performance of 
ERE in finding an approximate solution is very efficient. After the first three 
steps, about n - 7 queens are at zero-positions in n-queen problems, and about 
97-9896 clauses are satisfied in SAT problems. This property is quite important 
if a solution is required with a hard deadline. Now, let us take a look at some 
interesting characteristics of ERE: 

1. An ERE system is a self-organizing system. The process of solving CSPs 
by ERE is entirely determined by the locality and parallelism of individual 
entities. Thus, the computation required is low. 

2. The movement of an entity may affect the whole environment. And, the 
change in the environment will in turn affect the movements of other enti- 
ties. In other words, the interactions among entities are indirectly carried 
out through the medium of their environment. In this sense, we may regard 
that the entities cooperate with each other in finding a solution. 

3. The ERE method is quite open and flexible. We can easily add new prim- 
itive behaviors or combine present primitive behaviors into complex ones. 
In addition, we may give each entity different parameter settings, as well 
as modify the entity-environment interaction according to the specific re- 
quirements of the problems. 

5.6.5 Comparisons with Existing Methods 
In this subsection, we will compare the ERE method to the existing heuristic 

or distributed methods, and highlight their distinct features. 

5.6.5.1 Comparison with Min-Conflicts Heuristics 

The ERE method differs from the min-conflicts method in the following 
aspects: 

1. In the min-conflicts hill-climbing system reported in [Minton et al., 19921, 
the system chooses a variable at each step that is currently in conflict and re- 
assign its value by searching the space of possible assignments and select- 
ing the one with the minimum total conflicts. The hill-climbing system can 



AOC in Constraint Satisfaction 

get trapped in a local minimum (note that the same phenomenon can also be 
observed from the GDS network for constraint satisfaction). On the other 
hand, in our method, an entity is given a chance to select a random-move 
behavior according to its probability, and hence it is capable of escaping 
from a local trap. In our present work, we also note that the extent to which 
the entities can most effectively avoid the local minima and improve their 
search efficiency is determined by the probabilities (i.e., behavior selection 
probabilities) of the least-move and random-move behaviors. 

2. Another system introduced in [Minton et al., 19921 is informed backtrack- 
ing. It arguments a standard backtracking method with the min-conflicts 
ordering of the variables and values. This system attempts to find a se- 
quence of repairs, such that no variable is repaired more than once. If there 
is no way to repair a variable without violating a previously repaired vari- 
able, the algorithm backtracks. It incrementally extends a consistent partial 
assignment in the same way as a constructive backtracking program, how- 
ever, it uses information from the initial assignment to guide its search. The 
key distinction between this method and ours is that our method does not 
require backtracking. As stated by Minton et al. [Minton et al., 19921, their 
system trades search efficiency for completeness; for large-scale problems, 
terminating in a no-solution report will take a very long time. 

In both min-conflicts hill-climbing and informed backtracking systems pro- 
posed in [Minton et al., 19921, the key is to compute and order the choice 
of variables and values to consider. It requires to test all related constraints 
for each variable and to test all its possible values. This step is similar to 
the Remove-From and Add-To operations in our method, except that we 
only test a selected position and do not sort the variables. The use of the or- 
dering heuristic can lead to excessive assignment evaluation preprocessing 
and therefore will increase the computational cost at each step. 

4. In our present method, we examine the use of a fewer-conflicts repair, by 
introducing the better-move behavior, that requires only one violation value 
evaluation for each variable. The empirical evidence has shown that the 
use of the high-priority better-move when combined with other behaviors 
can achieve more efficient results. We believe that the reason that using 
the currently-available min-conflicts value at each step can compromise the 
systems performance is because the min-conflicts values quickly reduce 
the number of inconsistencies for some variables but at the same time also 
increase the difficulties (e.g., local minima) for other variables. 
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5.6.5.2 Comparison with Distributed Constraint Satisfaction 

Our multi-entity method has several fundamental distinctions from Yokoo 
et al.3 distributed constraint satisfaction method, as listed below: 

1. Yokoo et al.'s method does not require a global broadcasting mechanism 
or structure. It allows agents to communicate their constraints to others 
by sending and receiving messages such as ok?, and nogood. In other 
words, their methods handle the violation checking among agents (vari- 
ables) through agent-to-agent message exchanges, such that each agent 
knows all instantiated variables relevant to its own variables. 

In our method, the notion of entity-to-entity communication is implicit - 
we assume that for violation updating, each entity (representing the value 
of a variable or a group of variables) is 'informed' about the values from 
relevant entities (representing the values of relevant variables) either by 
means of accessing an n x n look-up memory table or via pairwise value 
exchange - both implementations enable an entity to obtain the same in- 
formation, but the latter can introduce significant communication overhead 
costs (i.e., longer cycles required [Yokoo et al., 19981) to the entities. 

2. In the asynchronous weak-commitment search algorithm [Yokoo et al., 
1998, Yokoo and Hirayama, 20001, a consistent partial solution is incre- 
mentally extended until a complete solution is found. When there exists 
no value for a variable that satisfies all the constraints between the vari- 
ables included in the partial solution, this algorithm abandons the whole 
partial solution and then constructs a new one. Although asynchronous 
weak-commitment search is more efficient than asynchronous backtrack- 
ing, abandoning partial solutions after one failure can still be costly. In the 
case of the ERE method, the high-level control mechanism for maintaining 
or abandoning consistent partial solutions is not required. 

Yokoo et al. have also developed a non-backtracking algorithm called dis- 
tributed breakout, which provides a distributed implementation for the con- 
ventional breakout [Yokoo and Hirayama, 20001. 

3. In asynchronous weak-commitment search, each agent utilizes the min- 
conflicts heuristic as mentioned in Section 5.6.5.1 to select a value from 
those consistent with the agent-view (those values that satisfy the con- 
straints with variables of high-priority agents, i.e., value-message senders). 

On the other hand, the ERE method utilizes a combination of value-selection 
heuristics that involves a better-move behavior for efficiently finding fewer- 
conflicts repairs. 

4. As related to the above two remarks, the asynchronous weak-commitment 
search and asynchronous backtracking algorithms are designed to achieve 
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completeness and thus the steps of backtracking and incremental solution 
constructing or abandoning are necessary, whereas the ERE method is aimed 
at more efficiently finding an approximate solution, which is useful when 
the amount of time available for an exact solution is limited. 

5. Last but not the least, we have also systematically compared the perfor- 
mance of the ERE system with that of Yokoo et al.'s algorithms, namely, 
asynchronous backtracking, asynchronous backtracking with min-conflicts 
heuristic, and asynchronous weak commitment, in solving some bench- 
mark n-queen problems [Yokoo et al., 19981. We can establish that as 
demonstrated in solving the bknchmark n-queen problems, ERE is an ef- 
fective method and the number of cycles used in the ERE system is very 
competitive with those by Yokoo et al.'s method, given that our formulation 
utilizes different behavior prioritization and violation checking schemes. 

In summary, as complementary to each other, both Yokoo et al.'s asyn- 
chronous method and the ERE method can be very efficient and robust when 
applied in the right context. A distinct feature of Yokoo et al.'s asynchronous 
method is, like other standard backtracking techniques, its completeness, 
whereas the feature of the ERE method lies in its efficiency and robustness 
in obtaining an approximate solution within a few steps (although it empiri- 
cally always produces an exact solution when enough steps are allowed). The 
ERE method is not guaranteed to be complete since it involves random-moves. 
Another feature of the ERE method is that its behaviors are quite easy to im- 
plement. 

5.6.5.3 Remarks on Partial Constraint Satisfaction 

Partial constraint satisfaction is a very desirable way of solving CSPs that 
are either over constrained or too difficult to solve [Wallace, 19961. It is also 
extremely useful in situations where we want to find the best solution obtain- 
able within fixed resource bounds or in real-time. Freuder and Wallace are the 
pioneers in systematically studying the effectiveness of a set of partial con- 
straint satisfaction techniques using random problems of varying structural pa- 
rameters [Freuder and Wallace, 19921. The investigated techniques included 
basic branch and bound, backjumping, backmarking, pruning with arc con- 
sistency counts, and forward checking. Based on the measures of constraint 
checks and total time to obtain an optimal partial solution, forward checking 
was found to be the most effective. Also of general interest is that their work 
has offered a model of partial constraint satisfaction problems (PCSPs) involv- 
ing a standard CSP, a partially ordered space of alternative problems, and a 
notion of distances between these problems and the original CSP. 

Our present work attempts to develop, and empirically examine, an efficient 
technique that is capable of generating partial constraint satisfaction solutions. 
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This work shares the same motivation as that of Freuder and Wallace's work 
[Freuder and Wallace, 1992, Wallace, 19961, and also emphasizes that the costs 
of calculating (communicating) and accessing constraint violation information 
should be carefully considered in developing a practically efficient technique. 
That is also part of the reason why much attention in our work has been paid 
to (1) the use of environmentally updated and recorded violation values (with- 
out testing from the scratch for each variable) and (2) the effectiveness of the 
better-move behavior in finding an approximate solution. 

5.6.5.4 Remarks on Entity Information and Communication for 
Conflict-Check 

Yokoo et al.'s method and the ERE method have a common thread; both for- 
mulations employ multiple entities that reside in an environment of variables 
and constraints (although in the ERE method, the environment also contains 
violation information, which is analogous to the 'artificial pheromone' in an 
ant system [Dorigo et al., 1999, Dorigo et al., 19911) and make their own deci- 
sions in terms of how the values of certain local variables should be searched 
and selected in the process of obtaining a globally consistent solution. 

Nevertheless, it should be pointed out that the present implementations of 
the two methods differ from each other in the way in which the entities record 
and access their conflict-check information. The former utilizes a sophisticated 
communication protocol to enable the entities representing different groups of 
variables and constraints to exchange their values. By doing so, the entities are 
capable of evaluating constraint conflict status with respect to other relevant 
entities (variables). On the other hand, our implementation utilizes a feature 
of entity current-value broadcast to enable other entities to compare with their 
values and to update the violation values in their local environment. Although 
the formulations may seem different, the objectives as well as effects of them 
are fundamentally similar. The reasons that we decided to use value broadcast 
and sharing are threefold: First, the implementation can make use of a common 
storage space and by doing so avoid introducing the same space requirement 
to every entity. Secondly, it can reduce the overhead costs incurred during 
the pairwise information exchange, which can be quite significant. Thirdly, 
since our ERE method extensively uses fewer-conflicts moves, such behaviors 
can be triggered based on only one possible violation evaluation instead of n 
assignment evaluations, and hence the access to such a broadcast information 
source is not demanding. 

5.6.5.5 Remarks on Sequential Implementation 

Theoretically, the ERE method can be implemented in a parallel fashion. 
However, for the sake of illustration, we have used a sequential implementa- 
tion to simulate the multi-entity concurrent or synchronous actions and to test 
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the effectiveness of our method. Our sequential simulation utilizes a global 
simulated clock, called step. The state of the environment as well as the en- 
tities (i.e., the positions of the entities) will be changed only at each discrete 
step. In order to simulate the concurrent or synchronous actions of the enti- 
ties at step k, we let the individual entities perform their cycles of behavior 
selection, value selection, and violation updating. In so doing, the entities are 
dispatched in a sequential fashion. Once this is completed, the state of the sys- 
tem will then be refreshed with the new positions of the entities corresponding 
to the newly-selected values, and thereafter, the simulated clock will be incre- 
mented to k + 1. Here, it is worth mentioning that apart from the fact that 
our implementation simulates the operations of a parallel system, the empiri- 
cal results of our sequential ERE implementation are still comparable to those 
reported in [Minton et al., 1992, Yokoo et al., 19981, if we evaluate the per- 
formance using the measures of number of constraint checks, as introduced by 
Freuder and Wallace [Freuder and Wallace, 19921, and space complexity. 

5.7. Entity Network for Complexity Analysis 
As we have described, ERE is a multi-entity based method for distributed 

problem solving. Generally speaking, in multi-entity systems for problem 
solving, entities will implicitly or explicitly form an entity network that con- 
nects all interacting entities. As an entity may or may not cooperate, coordi- 
nate, or compete with other entities, the resulting entity network may not be 
fully connected. Hence, two straightforward questions can be raised: What is 
the topology of a network formed by entities? How does the resulting entity 
network reflect the computational complexity of a given problem? Answer- 
ing these questions will help us understand the performance of the multi-entity 
system. It will also guide us in designing more reasonable methods for solving 
problems. In this section, we will address the above questions in the context of 
our ERE method. 

First, let us define the concept of an entity network. 

Definition 5.11 (Entity network) An entity network is a virtual2 graph corre- 
sponding to a multi-entity system, where vertices are entities, and edges (also 
called links) are the implicit or explicit relationships of cooperation, coordina- 
tion, or competition among entities. 

Correspondingly, the topology of an entity network can be defined as fol- 
lows: 

2 ~ h e  word 'virtual' implies that there may not exist physical links among entities in a multi-entity system. 



AUTONOMY ORIENTED COMPUTING 

Figure 5.11. Representing three clauses into an entity network, where each vertex denotes an 
entity, and each edge denotes a common variable shared by two corresponding entities. ai:Cli 
denotes that entity ai represents clause Cli. 

Definition 5.12 (Entity network topology) The topology of an entity network 
is the geometrical property of the network, which reflects the connectivity of the 
vertices and edges. 

5.7.1 Different Representations 
When using a multi-entity system to solve CSPs, there are two different 

types of representation: constraint-based representation, where entities rep- 
resent constraints, and variable-based representation, where entities represent 
variables. As we have seen from the preceding sections, ERE utilizes a variable- 
based representation. What we are interested in here is the topology of an en- 
tity network under different representations. Specifically, in what follows, we 
will examine which representation is better based on some benchmark SAT 
problems. 

5.7.1.1 Clause Based Representation 

In a clause-based representation, an entity represents a clause in a given 
SAT problem. In order to satisfy a clause, an entity needs to assign values 
to the variables in this clause such that at least one literal is true. Because a 
variable can appear in multiple clauses simultaneously, the entities that have 
common variables should cooperate and find consistent values to the variables. 
In this case, if two entities have a common variable, we regard it as an edge 
between the corresponding entity vertices. 

Figure 5.1 1 presents a schematic diagram of a clause-based entity network. 
In this figure, entities a1 and a2 have a common variable A, and,entities a1 and 
a3 have a common variable B. Hence, there are two edges between entities a1 
and a:! and between entities a1 and as, respectively. Because entities a2 and 
a3 have no identical variable, there is no edge between them. 
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Experimental Testing. Based on the above representation scheme, we 
have conducted some experiments using benchmark SAT problems: Uniform- 
3-SAT and Flat Graph Coloring problems [SATLIB, 20001. We randomly 
selected 10% of the instances from each testset. As two important measures 
for characterizing the topology of an entity network, the average characteristic 
path length, LG, and clustering coefficient, CG, of the network were calculated 
for each testset, as shown in Table 5.6. 

Here, characteristic path length LG and clustering coefficient CG of entity 
network G are defined as follows [Watts and Strogatz, 19981: 

Given an entity network, G = (V, R), where V = {vl, 212, - - , vn) is a set 
of entities and R = {rl, rg, . -  , r,) is a set of edges between entities in V. 

1. Characteristic path length: 

where di,j is the shortest distance between entities ai and aj. 

2. Clustering coefficient: 

where c,; is the clustering ratio (also called clustering in short) of entity ai. 
Assume d(ai) is the degree of ai (i.e., the number of neighboring entities 
of ai), and b(ai) is the number of existing edges between the neighbors of 
ai . Therefore, 

In general, LG is a global property of entity network G that indicates the 
connectivity of G. CG, on the other hand, is a local property that reflects the 
average connectivity of cliques in G. In essence, CG denotes the possibility 
that two entities, which have a common neighboring entity, are neighbors. 

Small World Topology. Milgram first proposed the notion of small world 
[Milgram, 19671. Later, Watts and Strogatz mathematically formulated a small 
world topology based on the means of characteristic path length and clustering 
coefficient [Watts and Strogatz, 19981. Small world phenomena have been ex- 
tensively found in natural systems (e.g., human society [Milgram, 19671, food 
Web in ecology [Montoya and Sole, 20001) as well as in man-made systems 
(e.g., the World Wide Web [Adamic, 19991). Walsh observed such phenomena 
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Table 5.6. Clause-based representation for benchmark SATs: Uniform-3-SAT and Flat Graph 
Coloring. In the experiments, we randomly selected 10% of the instances from each testset, and 
calculated the average values of LG, CG, and ,u for the selected instances. For each selected 
instance, we generated 10 random entity networks with the same number of vertices and edges. 
We calculated the average LG (i.e., Lrandom) and CG (i.e., Crandgm) of these random entity 
networks in order to compare them with those of the corresponding instances. 

Testset Vertices Edges LG Lrandom CG (?random P 
Uf50 218 4,072 1.836 1.829 0.444 0.215 2.071 

in search problems, such as graph coloring, time tabling, and quasigroup prob- 
lems [Walsh, 19991. He further experimentally showed that the small world 
topology could make a search process very difficult. 

Watts and Strogatz defined that a graph G with n vertices and m edges has 
a small world topology if and only if: 

LG Lrandom and CG >> Crandom,  (5.10) 

where Lrandom and Crandom are the average characteristic path length and 
clustering coefficient of random graphs with the same size as G (i.e., n vertices 
and m edges). Here, G must be connected, i.e., k >> ln(n), where k = % is 
the average degree of vertices in G [Watts and Strogatz, 19981. 

The above definition of a small world is qualitative. In order to measure the 
"small worldiness" of a graph, Walsh provided a quantitative measurement, 
i.e., proximity ratio, p  [Walsh, 19991: 

522 
LG - p = -  - CG . Lrandom 

Grand- 
Lrandom 

Crandom . LG ' 

A small world topology requires p  >> 1. The larger the p, the more "small 
worldy" the graph (i.e., the graph has more clusters). 
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Clause: -A v B v -C 

Figure 5.12. Representing a clause into an entity network, where each entity corresponds to 
one variable. ai:X denotes that entity ai represents variable X .  

To test whether or not there exist small world topologies in the entity net- 
works obtained from the clause-based representation of SATs, we calculated 
the average Lrandom and Grandom as well as p for each testset (see Table 5.6). 
Corresponding to each instance in a testset, we generated 10 random entity 
networks with the same size and calculated their CTandom and LTandom. The 
results show that in all testsets, LG FZ Lrandom, CG >> Crandom, and p > 2. 
This means that with the clause-based representation, the resulting entity net- 
works have small world topologies. 

5.7.1.2 Variable Based Representation 

In SATs, each clause normally contains several literals. In order to satisfy a 
clause, the related variables should be assigned compatible values in order to 
guarantee that at least one literal is true. In this sense, clauses act as constraints 
among variables. Since ERE represents variable groups with entities, the con- 
straints among variables are implicitly transformed into constraints among en- 
tities. In order to satisfy a constraint (i.e., a clause), entities that represent the 
variables in the constraint will restrain each other. If we assume each entity 
represents only one variable, the entity network can be constructed as follows: 
A vertex denotes an entity. An edge exists between two entities if and only if 
the corresponding variables appear in a certain clause simultaneously. 

Figure 5.12 provides a schematic diagram of a variable-based entity net- 
work, where variables A, B, and C are in the same clause, 1 A  V B V 4 .  
There is an edge between each pair of entities. 

Experimental Testing. Based on the above representation scheme, we 
encoded some benchmark SAT problems, Uniform-3-SAT and Flat Graph Col- 
oring problems [SATLIB, 20001, into entity networks. By calculating their 
characteristic path lengths and clustering coefficients, we examined whether 
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Table 5.7. Variable-based representation for benchmark SATs: Uniform-3-SAT and Flat 
Graph Coloring. In these experiments, we randomly selected 10% of the instances from each 
testset, and calculated average LG, CG, and p of the selected instances. For each instance, we 
generated 10 random entity networks with the same number of vertices and edges. We calcu- 
lated average LG (i.e., Lrandom) and CG (i.e., Crandom) of these random entity networks in 
order to compare them with those of the corresponding instances. 

Testset Vertices Edges LG Lrandom CG (?random P 
Uf50 50 507 1.693 1.587 0.501 0.469 1.140 
uf75 
UflOO 
Uf125 
Uf150 
Uf175 
Uf200 
Uf225 
Uf250 
Flat30 
Flat50 
Flat75 
Flat 100 
Flat125 
Flat150 
Flat175 
Flat200 

or not there existed small world topologies. Table 5.7 presents our experimen- 
tal findings. 

Non-Small-World Topology. From Table 5.7, we note that for all test- 
sets of Uniform-3-SAT, LG = LTandom, CG = CTandom, and 1.1 < p < 1.3. 
This indicates that small world topologies do not exist. For all testsets of Flat 
Graph Coloring, LG $ LTandom, CG $ CTandom, and p is around 1.65. They 
do not show small world topologies, either. Thus, we can conjecture that with 
a variable-based representation, the resulting network does not have a small 
world topology. 

In the above encoding scheme, an entity can also represent several vari- 
ables. In this case, two entities will be connected by an edge if and only if two 
variables, respectively represented by these two entities, appear in an identical 
clause. The resulting entity network can be derived from the entity network 
where each entity represents one variable by merging some of the original en- 
tities into a single one. Obviously, the former network is denser than the latter 
one. A small world topology normally exists in a connected, but 'sparse', net- 
work. Since the latter entity network does not have a small world topology, 
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the former will not either. This point has been demonstrated in some other 
experiments, where p is still less than 2.0. 

5.7.2 Discussions on Complexity 

The previous sections have experimentally examined the topologies of entity 
networks as obtained from two different representations of some given prob- 
lems. In this section, we will further discuss their computational complexities. 
By doing so, we will understand the rationale behind the variable-based rep- 
resentation in the ERE method. We will then obtain a guiding principle for 
designing a multi-entity system for problems solving. 

5.7.2.1 Complexities under Different Representations 

From the previous section, we note that given an SAT problem, different rep- 
resentations can lead to different entity networks. In the two cases mentioned, 
the first one shows small world topologies in its resulting entity networks. The 
second one, i.e., ERE, does not generate small world topologies. 

Walsh has studied the relationship between topologies (in particular, small 
world topologies) and computational complexities. In [Walsh, 19991, Walsh 
empirically verified that a small world topology increases the computational 
complexity of a search algorithm that involves certain heuristics. This is be- 
cause heuristics normally guide a search process locally. But in a small world 
network, based on local information an algorithm cannot well predict global 
properties of the problem at hand. 

We have also experimentally validated this finding based on the previous 
two representations of SAT problems. Specifically, using the same SAT prob- 
lems, we have examined a clause-based representation as opposed to a variable- 
based representation as used in ERE. In our experiments, each entity represents 
a clause. A clause acts as the local space where the corresponding entity re- 
sides and behaves. A literal in a clause is a position where an entity can stay. 
If an entity stays at a certain position, the corresponding literal will be true. 
If two entities stay at two positions whose literals are negations of each other, 
a conflict occurs. For the whole system, to solve a given SAT is to eliminate 
conflicts. Our experimental results suggest that with such a clause-based repre- 
sentation, it is normally hard (in term of entity movements) to solve a problem, 
which is however relatively easier to solve by ERE with a variable-based rep- 
resentation. 

5.7.2.2 Balanced Complexities in Intra- and Inter-Entity Computations 

In ERE, an entity can represent one or more variables. Section 5.7.1.2 has 
experimentally shown that in both cases, the resulting entity networks do not 
have small world topologies. But, which case is better? Experiments have 
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suggested that as the number of variables represented by an entity in ERE 
increases, the resulting entity networks will be less 'small worldy', because 
the networks become smaller and denser. In an extreme case, we may use only 
one entity to represent all variables. In this case, the network becomes to an 
isolated vertex. Is this the best situation? 

The answer is no. In fact, if an entity represents multiple variables, the 
entity should assign values to all its variables. Because the variables of an 
entity are usually not independent, as the number of variables represented by 
the entity increases, the intra-entity computational complexity to assign values 
to its variables increases, too. Therefore, a good design should balance the 
intra- and inter-entity computational complexities to achieve the lowest total 
computational cost. 

With respect to this point, our experiments have suggested that when an 
entity represents four or five variables, the total computational cost, in terms of 
entity movements and variable flips, becomes the lowest. 

5.7.2.3 A Guiding Principle 

Based on the above discussions, we can arrive at a guiding principle for 
designing a multi-entity based method for solving a problem: 

It should avoid having a small world topology in its resulting entity net- 
work. 

It should maintain balanced intra- and inter-entity computational complex- 
ities in order to achieve the lowest total computational cost. 

5.8. Summary 
In this chapter, we have described an AOC-by-fabrication based, multi- 

entity method, called ERE, for solving constraint satisfaction problems (CSPs), 
such as n-queen problems, and satisfiability problems (SATs), which are re- 
garded as special cases of CSPs in this chapter. Specifically, we have presented 
the general model of the ERE method. Through experiments on benchmark 
problems, we have empirically examined the performance of ERE. Next, we 
have discussed several important issues in ERE, such as probability setting 
and variable grouping. Finally, by studying the topologies of entity networks 
as foimed in ERE, we have shown the rationale behind the variable-based rep- 
resentation in ERE and have obtained a guiding principle for designing multi- 
entity based problem solving systems. The following are some specific re- 
marks on ERE and AOC-by-fabrication. 

5.8.1 Remarks on ERE 
The key ideas behind ERE rest on three notions: Environment, Reactive 

rules, and Entities. In ERE, each entity can only sense its local environment 
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and apply some behavioral rules for governing its movements. The environ- 
ment records and updates the local values that are computed and affected ac- 
cording to the movements of individual entities. In solving a CSP with the 
ERE method, we first divide variables into several groups, and then represent 
each variable group with an entity whose positions correspond to the elements 
of the Cartesian product of variable domains. The environment for the whole 
multi-entity system contains all the possible domain values for the problem, 
and at the same time, it also records the violation values for all the positions. 

An entity can move within its row, which represents its domain. So far, 
we have introduced three primitive behaviors: least-move, better-move, and 
random-move. Using these primitive behaviors, we can constitute other com- 
plex behaviors, such as F2BLR. The movement of an entity will affect the 
violation values in the environment. It may add or reduce the violation value 
of a position. After being randomly initialized, the ERE system will keep on 
dispatching entities, according to a certain predefined order, to choose their 
movements until an exact or approximate solution is found. 

Besides describing the ERE method, we have also experimentally demon- 
strated how this method can effectively find a solution and how efficient it 
is in solving various n-queen problems for both exact and approximate solu- 
tions. Several practical rules for parameter settings have been discussed and 
established following our observations from the experiments. Furthermore, 
we have employed ERE to solve SATs and have obtained some experimental 
results on benchmark SAT testsets [Hoos and Stiitzle, 2000b, Liu and Han, 
20011: Uniform Random-3-SAT and Flat Graph Coloring from the SATLIB. 
Our experimental results are comparable to, and more stable than, those of the 
existing algorithms. 

5.8.2 Remarks on AOC by Fabrication 
As we can see from this chapter, the AOC-by-fabrication approach focuses 

on building a mapping between a real problem and a natural phenomenon or 
system, the working mechanism behind which is more or less known (see Fig- 
ure 5.13). In the mapping, the synthetic entities and their parameters (e.g., 
states and behaviors) correspond respectively to the natural life-forms and their 
properties. Ideally, some special states of the natural phenomenon or system 
correspond to the solutions of the real problem. 

From the ERE example, we can note the following common characteristics 
of the AOC-by-fabrication approach: 

1. There is a group of autonomous entities, each of which is mainly character- 
ized by sets of goals, states, behaviors, and behavioral rules. Entities may 
be homogeneous or heterogeneous. Even in the homogeneous case, entities 
may differ in some detailed parameters. 
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phenomeno 

or 
system 

Real 
problem 

Figure 5.13. The AOC-by-fabrication approach, which is intended to build a mapping be- 
tween a real problem and a natural phenomenon or system. In the figure, entities are character- 
ized by a group of parameters (e.g., G, B, S, F, and R), the meanings of which have been given 
in Chapter 4 (Definitions 4.3-4.9). 

2. The composition of the entity group may change over time, through the pro- 
cess analogous to birth (amplification of the desired behavior) and death 
(elimination of the undesired behavior). But, in some applications, the 
number of entities is fixed. 

3. The interactions between autonomous entities are local; neither global in- 
formation nor central executive control is needed. 

4. The environment is dynamical and records the information related to the 
current status of the problem. It serves as a medium for information sharing 
among autonomous entities. 
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5. The local goals of autonomous entities drive the selection of their primitive 
behaviors at each step. 

6. The global goal of the whole AOC system is represented by a universal 
fitness function that measures the progress of the computation. 
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Exercises 
5.1 Give brief answers to the following questions: 

(a) What are the key features of the ERE method? 

(b) Why can the ERE method successfully and efficiently solve some 
computationally hard problems? 

5.2 ERE is an AOC-based method for solving constraint satisfaction problems 
as well as satisfiability problems. According to the AOC framework dis- 
cussed in Chapter 4, formulate the ERE method. 

5.3 What are the similarities and differences between ERE and local search? 

5.4 A graph coloring problem can be described as follows: Given a graph 
G = (V, E), where V is a node set and E is an edge set, you are required 
to use k colors to paint all nodes such that no two adjacent nodes have 
the same color. Graph coloring problems fall into a category of classical 
constraint satisfaction problems. Try to use ERE to solve graph coloring 
problems. 

5.5 In the described ERE method, 

(a) Probabilities least-p, better-p, and random-p are empirically deter- 
mined. Find an adaptive or self-adaptive way to determine the proba- 
bilities? 

(b) Variable grouping is predefined: Variables are orderly divided into 
groups with almost the same size. This way of grouping does not con- 
sider the inherent relationships among the variables belonging to the 
same group. Find other ways to group variables in order to improve 
the efficiency of the ERE method. The following are two hints: 

Relation-based grouping: Study relationships among variables and 
group variables based on them; 
Dynamical grouping: Variable groups are dynamically changed. 

5.6 Tang et al. introduced an entity compromise technique in [Tang et al., 
20031, where neighboring entities compromise and act as a single entity 
in order to eliminate constraints among them. Try to apply this technique 
to the ERE method. 

5.7 Think about other techniques (e.g., self-adaptation) to improve the ERE 
method. 



Chapter 6 

AOC in Complex Systems Modeling 

6.1. Introduction 
Although the Internet, in particular, the World Wide Web, brings deeper and 

deeper influence on people's daily life, the regularities and working mecha- 
nisms behind many Internet related phenomena still remain unknown. There- 
fore, how to reveal and characterize such regularities and mechanisms becomes 
a pressing mission to computer scientists. 

Complex systems modeling is another goal of AOC. In this chapter, we 
will show how the AOC-by-prototyping approach is used to solve a complex 
systems modeling task, i-e., revealing the unknown factors that determine the 
regularities in Web surfing [Liu et al., 2004bl. In so doing, we can note the 
features of the AOC-by-prototyping approach. 

In the real world, with the help of a blueprint, engineers can build a model 
of a system in an orderly fashion. When there is insufficient knowledge about 
the mechanism showing how the system works, it is difficult, if not impossible, 
to build such a model. Assumptions about the unknown workings have to be 
made in order to get the process started. Given some observable behavior of the 
desired system, designers can verify the model by comparing that of the model 
with the desired features. The process will be repeated several times before a 
good, probably not perfect, prototype is found. This is AOC-by-prototyping. 
Apart from obtaining a working model of the desired system, an important 
byproduct of the process is the discovery of the mechanisms that are unknown 
when the design process first started. This view is shared by researchers de- 
veloping and testing theories about society and social phenomena [Conte and 
Gilbert, 1995, Doran and Gilbert, 19941. Other studies have used similar meth- 
ods, for instance, in the problem domains of highway traffic flow [Helbing and 
Huberman, 19981, traffic jams [Rasmussen and Barrett, 1995, Howard, 19971, 
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crowd control in sports grounds [Still, 20001, and crowd dynamics in a smoky 
room where a fire has broken out [Helbing et al., 2000al. 

6.1.1 Regularity Characterization 
Researchers have recently observed several interesting, self-organized regu- 

larities from the World Wide Web, ranging from the structure and growth of the 
Web to the access patterns in Web surfing. What remains to be a great challenge 
in Web log mining is how to explain user behavior underlying observed Web 
usage regularities. By experimenting with the entity-based decision model of 
Web surfing, we aim to explain how some Web design factors as well as user 
cognitive factors may affect the overall behavioral patterns in Web usage. 

Viewing the Web as a large directed graph of nodes (i.e., Web pages) con- 
nected with links (i-e., hyperlinks), Hubennan et al. proposed a random-walk 
model to simulate certain regularities in user navigation behavior and sug- 
gested that the probability distribution of surfing depth (steps) follows a two- 
parameter inverse Gaussian distribution [Huberman et al., 19971. They con- 
jectured that the probability of finding a group surfing at a given level scales 
inversely in proportion to its depth, i.e., P(L)  L - ~ / ~ ,  where L is depth. 

In order to further characterize user navigation regularities as well as to un- 
derstand the effects of user interests, motivation, and content organization on 
user behavior, in this chapter we will present an information foraging entity 
based model that takes into account the interest profiles, motivation aggrega- 
tion, and navigation strategies of users. 

6.1.2 Objectives 
The random-walk model [Hubennan et al., 1997, Lukose and Hubennan, 

19981 and the Markov chain model [Levene et al., 2001, Levene and Loizou, 
19991 have been used to simulate statistical regularities as empirically observed 
from the Web. However, these models do not relate the emergent regularities to 
the dynamical interactions between users and the Web, nor do they reflect the 
inter-relationships between user behavior and the contents or structure of the 
Web. They are, by and large, black-box methods that do not explicitly address 
the details of interacting entities. 

The issues of user interest and motivation to navigate on the Web are among 
the most important factors that directly determine user navigation behavior 
[Thatcher, 19991. In our present study, we aim to take one step further by 
proposing a new AOC model of Web surfing that takes into account the char- 
acteristics of users, such as interest profiles, motivations, and navigation strate- 
gies. By doing so, we attempt to answer the following questions: 

1. Is it possible to experimentally observe regularities similar to empirical 
Web regularities if we formulate the aggregation of user motivation? In 
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other words, is it possible to account for empirical regularities from the 
point of view of motivation aggregation? 

2. Are there any navigation strategies or decision making processes involved 
that determine the emergence of Web regularities, such as the distributions 
of user navigation depth? 

3. If the above is validated, will different navigation strategies or decision 
making processes lead to different emergent regularities? In other words, 
when we observe different power-law distributions, can we tell what are 
dominant underlying navigation strategies or decision making processes 
that have been used by users? 

4. What is the distribution of user interest profiles underlying emergent regu- 
larities? 

5. Will the distribution of Web contents as well as page structure affect emer- 
gent regularities? 

6. If we separately record users who can successfully find relevant information 
and those who fail to do so, will we observe different regularities? 

In order to answer the above questions, we will develop a white-box, AOC 
model. This model should, first of all, incorporate the behavioral character- 
istics of Web users with measurable and adjustable attributes. Secondly, it 
should exhibit the empirical regularities as found in Web log data. Thirdly, 
the operations in the model should correspond to those in the real-world Web 
surfing. 

In the next section, we will present our white-box, information foraging 
entity based model for characterizing emergent Web regularities. Foraging 
entities are information seeking entities that are motivated to find certain infor- 
mation of their special interest from the pages in artificial Web space. 

6.2. Background 
This section provides an overview of research work related to Web mining. 

Generally speaking, Web mining is aimed to study the issues of (1) where and 
how information can be efficiently found on the Web and (2) how and why 
users behave in various situations when dynamically accessing and using the 
information on the Web. 

6.2.1 Web Mining for Pattern Oriented Adaptation 
The first major task in Web mining may be called Web mining for pattern 

oriented adaptation, that is to identify the inter-relationships among different 
websites, either based on the analysis of the contents in Web pages or based 
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on the discovery of the access patterns from Web log files. By understanding 
such inter-relationships, we aim to develop adaptive Web search tools that help 
facilitate or personalize Web surfing operations. 

This task is certainly justified as studies have shown that 85% of users use 
search engines to locate information [GVU, 20011. Even though good search 
engines normally index only about 16% of the entire Web [Lawrence and Giles, 
19991, an adaptive utility can still be very useful to filter or rank thousands of 
Web pages that are often returned by search engines. For instance, some re- 
searchers have developed efficient search techniques that detect authorities, 
i.e., pages that offer the best resource of the information on a certain topic, and 
hubs, i.e., pages that are collections of links to authorities [Cbakrabarti et al., 
1999, Gibson et al., 19981. When it is difficult to directly find relevant infor- 
mation from search engines, navigating from one page to another by following 
a hyperlink has become a natural way of searching for information. In this 
respect, it will be even more important to adaptively organize Web information 
in such a way that relevant information can be conveniently accessed. 

6.2.1.1 W e b  Data Mining 

As classified by Mobasher, Web data mining has traditionally been dealing 
with three problems: computing association rules, detecting sequential pat- 
terns, and discovering classification rules and data clusters [Mobasher et al., 
19961. This classification of Web mining work has its counterparts in the field 
of data mining. Pitkow summarized the previous work in Web mining with 
respect to different data sources, such as client, proxy, gateways, server, and 
Web [Pitkow, 19981. Cooley presented a taxonomy of Web mining that distin- 
guishes Web content mining from Web usage mining [Cooley et al., 19971. 

6.2.1.2 User Behavior Studies 

Web usage mining deals with the analysis of Web usage patterns, such as 
user access statistical properties [Catledge and Pitkow, 1995, Cuhna et al., 
19951, association rules and sequential patterns in user sessions [Cooley et al., 
1999, Pei et al., 2000, Spiliopoulou, 1999, Spiliopoulou et al., 1999, Zaane 
et al., 19981, user classification and Web page clusters based on user behavior 
[Joshi and Krishnapuram, 2000, Nasraoui et al., 1999, Yan et al., 19961. The 
results of Web usage mining can be used to understand user habits in browsing 
information as well as to improve the accessibility of websites. 

6.2.1.3 Adaptation 

The primary objective of Web mining for pattern oriented adaptation is to 
help users efficiently surf and retrieve information from the web. One way 
to make information search efficient is to reduce the latency in information 
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search by means of optimizing cache algorithms based on user browsing be- 
havior characteristics on proxies or gateways [Barford et al., 1999, Breslau 
et al., 1998, Glassman, 19941, or by means of prefetching Web contents. Pad- 
manabhan proposed a method of predictive'prefetching based on the analysis 
of user navigation patterns [Padmanabhan and Mogul, 19961. However, this 
method is only useful if the relevant information contents at the next level can 
be correctly predicted [Cuhna and Jaccoud, 19971. Some studies have exam- 
ined the issue of website workload [Arlitt and Williamson, 1996, Barford and 
Crovella, 19981 and network traffic [Mogul, 19951 in order to find ways to 
improve the efficiency of information response and propagation. 

Other examples of Web mining for pattern oriented adaptation include the 
studies on finding efficient search or personalization algorithms that directly 
work with the contents on the Web as well as the structure of the Web [Madria 
et al., 1999, Spiliopoulou, 19991. 

6.2.2 Web Mining for Model Based Explanation 
The second important task in Web mining can be referred to as Web min- 

ing for model-based explanation, that is to characterize user navigation behav- 
ior during Web surfing operations, based on empirical regularities as observed 
from Web log data. 

6.2.2.1 Web Regularities 

Many identified interesting regularities are best represented by characteristic 
distributions following either a Zipf-like law [Zipf, 19491 or a power law. That 
is, the probability P of a variant taking value Ic is proportional to Ic-", where 
a is from 0 to 2. A distribution presents a heavy tail if its upper tail declines 
like a power law [Crovella and Taqqu, 19991, 

What follows lists some of the empirical regularities that have been found 
on the Web: 

1. The popularity of requested and transferred pages across servers and proxy 
caches follows a Zipf-like distribution [Barford et al., 1999, Breslau et al., 
1998, Cuhna et al., 1995, Glassman, 19941. 

2. The popularity of websites or requests to servers, ranging from Web user 
groups to fixed user communities, such as within a proxy or a server, fol- 
lows a power law [Adamic and Huberman, 2000, Breslau et al., 1998, Mau- 
rer and Huberman, 20001. 

3. The request inter-arrivals and Web latencies follow a heavy-tail distribution 
[Barford and Crovella, 1998, Helbing et al., 2000b, Yan et al., 19961. 

4. The distribution of document sizes either across the Web or ,limited to pages 
requested in a proxy or a certain user community exhibits a heavy tail [Arlitt 
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and Williamson, 1996, Barford et al., 1999, Barford and Crovella, 1998, 
Cuhna et al., 19951. 

5. The number of pages either across all websites or within a certain domain 
of the Web follows a power law [Huberman and Adamic, 1999al. 

6. The trace length of users within a proxy or a website, or across the Web 
follows a power law [Adar and Huberman, 2000, Huberman et al., 1997, 
Levene et al., 2001, Lukose and Huberman, 19981. 

7. The dynamical response of the Web to a Dirac-like perturbation follows a 
power law [Johansen and Sornette, 20001. 

8. The distribution of links (both incoming and outgoing) among websites 
or pages follows a power law [Adamic and Huberman, 1999, Albert et al., 
1999, Barabasi and Albert, 1999, Barabasi et al., 2000, Broder et al., 20001. 

6.2.2.2 Regularity Characterization 

Although researchers have empirically observed strong regularities on the 
Web, few of them have dealt with the issue of how such regularities are emerged. 
Some black-box models of regularities consider only the input and output data 
correspondence for a "system", without explicitly addressing the rationale of 
underlying mechanisms. In [Barabasi and Albert, 19991, a random network 
model with growth and preferential attachment factors is proposed that pro- 
duces a power distribution of link number over websites or pages. Huberman 
showed that the power-law distribution of page number over various websites 
can be characterized based on a stochastic multiplicative growth model coupled 
by the fact that websites appear at different times and grow at different rates 
[Huberman and Adamic, 1999bl. He also presented a random-walk model to 
simulate user navigation behavior that leads to a power distribution of user 
navigation steps [Huberman et al., 1997, Lukose and Huberman, 19981. Lev- 
ene developed an absorbing Markov chain model to simulate the power-law 
distribution of user navigation depth on the Web [Levene et al., 2001, Levene 
and Loizou, 19991. 

6.3. Autonomy Oriented Regularity 
Characterization 

In our work, we are interested in finding the inter-relationship between the 
statistical observations on Web navigation regularities and the foraging behav- 
ior patterns of individual entities. In what follows, we will introduce the no- 
tions and formulations necessary for the modeling and characterization of Web 
regularities with information foraging entities. 
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6.3.1 Artificial Web Space 
In the entity-based Web regularity characterization, we view users as in- 

formation foraging entities inhabiting in a particular environment, namely, the 
Web space. In this section, we will address the characterization issue of the 
Web space. 

The Web space is a collection of websites connected by hyperlinks. Each 
website contains certain information contents, and each hyperlink between two 
websites signifies certain content similarity between them. The contents con- 
tained in a website can be characterized using a multi-dimensional content 
vector where each component corresponds to the relative information weight 
on a certain topic. In order to build the artificial Web space that characterizes 
the topologies as well as connectivities of the real-world Web, we introduce the 
notion of an artificial website that may cover contents related to several topics 
and each topic may include a certain number of Web pages. Such a web- 
site may also be linked to other websites of similar or different topics through 
URLs. 

6.3.1.1 Web Space and Content Vector Representations 

We consider the Web space as a graph consisting of nodes and links, as 
suggested in [Broder et al., 20001. The nodes correspond to websites or pages, 
whereas the links correspond to hyperlinks between them. The information 
contents in a certain node are represented using the weights of a content vector 
as follows: 

1 2  2 Cn = [ c w ~ ,  CW,, . . . , CW,, . . . , CW:], (6.1) 

where 
C,: content vector for node n (i.e., website or page); 

cwk: relative content information weight on topic i; 
M: number of topics. 

To determine the content similarity between two nodes, we will make use 
of the following distance function: 

where d(Ci, C j )  denotes the Euclidean distance between the content vectors of 
nodes i and j. 

Thus, based on the preceding definition, we are able to specify the relation- 
ship between the contents of two nodes. For instance, when two nodes are 
linked through a hyperlink, it is reasonable to assume that the contents con- 
tained in the two nodes is somewhat related, that is to say, thei,r content vector 
distance is below a certain positive threshold. 
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6.3.1.2 Modeling Content Distributions 

Now that we have defined a means of representing node contents, our next 
question is how to describe the distribution of node contents with respect to 
various topics. In our present study, we will investigate the behavior of in- 
formation foraging entities interacting with Web pages. The contents of those 
Web pages are distributed following a certain statistical law. Specifically, we 
will implement and contrast two models of content distribution: normal distri- 
bution and power-law distribution. 

1. Normal distribution: The content weight cwi with respect to topic j in 
node n is initialized as follows: 

T+ ( X, 1 ,  if i = j, 
otherwise, 

f x c  - normal (0, ap), (6.4) 

T -- normal (pt, at) ,  (6.5) 

where 
fxc : probability distribution of weight X,; 

normal (0, ap): normal distribution with mean 0 and variance ap; 
T: content (increment) offset on a topic; 

pt: mean of normally distributed offset T; 
at: variance of normally distributed offset T. 

In the above model, we assume that all content weights on a topic are non- 
negative. We can adjust at and pt to get various topic distribution~ in Web 
pages; the smaller at is or the larger pt is, the more focused the node will 
be on the topic. 

2. Power-law distribution: In this model, the content weight of node n on 
topic j ,  cur;, will follow a power law: 

T+lX,l, i f i = j ,  

= { I X, I ,  otherwise, 

fx, - a,(& + l )+~+ l ) ,  X, > 0, ap > 0, 

where 
fxc: probability distribution of weight X,; 
ap: shape parameter of a power-law distribution;. 

T: content (increment) offset on a topic. 

Similar to the model of a normal distribution, here we can adjust alp to 
generate different forms of a power-law distribution. 
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6.3.1.3 Constructing an Artificial Web 

Having introduced the notions of content vector representation and content 
distribution models, in what follows we will discuss how to add links to the 
artificial Web space. 

There are two major steps involved. First, we create several groups of nodes, 
where each group focuses on a certain topic. The distribution of the contents 
in the nodes follows a specific model as given above. We assume that an in- 
formation entity starts its foraging from a Web homepage that contains links 
to the nodes of several topics. In our study, we assign this homepage an equal 
distance to individual topics as follows: 

where cwi denotes the content weight of the homepage on topic i. T, denotes 
the content (increment) offset on the topic. 

After initializing the content vectors, the next step is to build links between 
the nodes. As mentioned above, we assume that when there is a link between 
two nodes, the information contents of the nodes should be related. Therefore, 
we will build a link between two nodes only if the content vector distance 
between them is below a positive distance threshold, r. r can be adjusted in 
order to generate Web clusters of different degrees of connectivity. In this 
respect, we refer to r as the degree-of-coupling of websites. Increasing r leads 
to increasing the number of links in a website (that is, the similarity between 
the contents of two linked nodes will decrease). 

Algorithm 6.1 summarizes the key steps in constructing the artificial Web 
space. 

Algorithm 6.1 Constructing the artificial Web space. 
for each topic k do 

Create a node group and content vectors; 
end for 
for each node i in the group do 

Initialize the link list of node i; 
for each node j ( j  # i) in the group do 

if d(Ci,Cj) < r then 
Add node j to the link list of node i; 
Add d(Ci, Cj) to the link list of node i; 

end if 
end for 

end for 
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6.3.1.4 Remarks on the Artificial Web Server 

In the construction of our artificial Web server, we have assumed that two 
pages are similar if they are linked. This assumption has been found to be gen- 
erally valid with respect to the real-world Web by several researchers [Menczer, 
2004a, Menczer, 2004b, Flake et al., 20021. For instance, in the studies re- 
ported in [Menczer, 2004b1, Menczer has examined the relationship between 
content, linkage, and semantic similarity measures across a large number of 
real-world Web page pairs and has found that the Pearson's correlation coeffi- 
cients between content and linkage similarity measures significantly positive. 
For instance, the content similarity measure can reach up to 0.4 -- 0.6 when the 
linkage similarity measure (a neighborhood function) is around 0.6. Both mea- 
sures will have peaks around 0.9. Such a correlation is found to be significantly 
positive in the Web pages that deal with News, Home, Science, Sports, Ref- 
erence, and Games among others. In [Menczer, 2004a1, Menczer has further 
formalized and quantitatively validated two conjectures that are often taken for 
granted; they are: 

1. The link-content conjecture that "a page is similar to the pages that link to 
it," and 

2. The link-cluster conjecture that "pages about the same topic are clustered 
together." 

Having said so, it should be pointed out that given the variety of kinds of links 
that are created in the real-world Websites, "distance" may not always be a 
good indication of "relevance" among Web pages. In some cases, two Web 
pages may be linked simply because one adds a special feature or service to 
another. 

6.3.1.5 Dynamically Generated Web Pages 

In the real-world Web, some portion of pages may be "hidden" in databases; 
they are generated on the fly. In the artificial Web pages constructed in this 
study, we have not considered the dynamical generation of Web pages, but 
used only existing and continuing pages. Although our virtual Web pages may, 
to a certain extent, model the characteristics of the dynamically generated Web 
pages, there are still differences between them that deserve further experimen- 
tal examinations taking both facets into consideration. 

6.3.2 Foraging Entities 
In our AOC model, we will use foraging entities to emulate Web users. 

Therefore, how to characterize foraging entities will be a crucial task in our 
modeling. In the following, we will address users' interest profile representa- 
tion, interest distribution, and motivational support aggregation. 
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6.3.2.1 Interest Profiles 

Each entity forages in the Web space with different interests in mind, e.g., 
accessing a specific website for an update on some contents, searching for in- 
formation related to some topics, or simply wandering in the Web space to 
browse various topics. The interest profile of an entity will determine its be- 
havior in Web surfing. In this section, we will describe how to model the 
interest profile of an entity using a multi-dimensional preference vector that 
specifies the interests of the entity in various topics. In addition, we will intro- 
duce the measure of interest entropy to characterize whether or not an entity 
has a balanced interest profile. 

Specifically, we define the preference vector of an entity as follows: 

where 
Pm: preference vector of entity m; 

pwk: preference weight of entity m on topic i; 
H,: interest entropy of entity m. 

In Equation 6.1 1, we define H, in a similar way as we define the measure 
of entropy in information theory. Here, H, indicates the breadth and balance 
of an entity's interests in different topics. The larger H, is, the more evenly 
distributed the entity's interests will be. As a result, the entity is more likely to 
have multiple goals and jump from one topic to another in its surfing. When 
the entity has equal interests in all topics, the value of H, will be the largest, 

1 
Hmm = - C 109 (d) = 1 ~g ( N )  . 

2=1 

As will be seen in the next section, the quantity of interest entropy will affect 
the decision of an entity on which Web page it will select among several others. 

6.3.2.2 Modeling lnterest Distributions 

In order to investigate how different interest distributions may influence the 
behavior patterns in entity foraging, in our study we will specifically imple- 
ment and observe two interest distribution models: normal distribution and 
power-law distribution. Thus, the preference vector of a foraging entity will be 
initialized as follows: 
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1.  Normal distribution: The weight of a preference vector, pw&, for entity 
m on topic i is defined as follows: 

fx, -- normal (0, a,), (6.14) 

where normal(0, a,) denotes the normal distribution with mean 0 and 
variance a,. 

2. Power-law distribution: The probability distribution of entity m's prefer- 
ence weight on topic i,  pwh, is given as follows: 

where a, denotes the shape parameter of a power-law distribution. 

We can get various interest profiles of foraging entities by adjusting param- 
eters a, and a,. 

6.3.2.3 Motivational Support Aggregation 

When an information foraging entity finds certain websites in which the 
content is close to its interested topic(s), it will become more ready to search 
the websites at the next level, that is, it will get more motivated to surf deeper. 
On the other hand, when an entity does not find any interesting information 
after some foraging steps or it has found sufficient contents satisfying its in- 
terests, it will stop foraging and leave the Web space. In order to model such 
a motivation-driven foraging behavior, here we introduce a support function, 
St, which serves as the driving force for an entity to forage further. When an 
entity has found some useful information, it will get rewarded, and thus the 
support value will be increased. As the support value exceeds a certain thresh- 
old, which implies that the entity has obtained a sufficient amount of useful 
information, the entity will stop foraging. In other words, the entity is satisfied 
with what it has found. On the contrary, if the support value is too low, the 
entity will lose its motivation to forage further and thus leave the Web space. 

Specifically, the support function is defined as follows: 

where 



AOC in Complex Systems Modeling 

St: support value at step t; 
AMt: motivational loss at step t; 
ARt: reward received at step t; 
0, : coefficients of motivation and reward terms, respectively. 

The initial support value, maximum and minimum support thresholds will 
be set, respectively, as follows: 

1 
reknit-support, = - pwh, 

2 .  
2=1 

where pwk denotes the preference weight of entity m with respect to topic i. 

6.3.3 Foraging in Artificial Web Space 
Generally speaking, hyperlinks from a Web page are connected to other 

pages covering the same or similar topics. The anchor texts that are associated 
with the hyperlinks usually indicate the topics of the linked pages. In the pro- 
cess of information foraging, an entity will examine the anchor texts and then 
predict which of the linked next-level pages may contain more interesting con- 
tents. In so doing, the success of content prediction by the entity will depend 
on its specific navigation strategy. 

Earlier research on closed hypertext systems, databases, and library infor- 
mation systems have suggested that there possibly exist three browsing strate- 
gies: search browsing (directed search where the objective is known), general 
purpose browsing (consulting sources that have a high likelihood of items of 
interest), and serendipitous browsing (purely random) [Cove and Walsh, 19881. 
In this section, we will provide the computational models of three navigation 
strategies that serve as the behavioral rules of information foraging entities. As 
we will see, these behavioral rules are based on the evaluation of the pages at 
the next level. According to their navigation strategies, information foraging 
entities can be classified into three types: random entities, rational entities, and 
recurrent entities. Moreover, we will describe the primitive behavior of enti- 
ties for updating their interest profiles, motivation, and reward functions during 
Web navigation. Finally, we will elaborate on the foraging behavior through 
an algorithm. 

6.3.3.1 Navigation Strategies 

Suppose that entity m is currently on page n that belongs to:topic j (also re- 
ferred to as domain here). There are h hyperlinks inside page n, among which 
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hl hyperlinks belong to the same topic as page n and ha hyperlinks belong to 
other topics. We can describe the strategies of foraging entities in selecting the 
next-level Web page, i.e., selecting a hyperlink, k, from h hyperlinks, in terms 
of selection probabilities, as follows: 

1. Random entities: Random entities have no strong interests in any specific 
topics. They wander from one page to another. In so doing, their decision 
on selecting the next-level page is random. The probability, pk, of reaching 
node k at the next step can be written as follows: 

2. Rational entities: Most foraging entities behave rationally. Rational enti- 
ties have certain interested topics in mind and they forage in order to locate 
the pages that contain information on those topics. When they reach a new 
website, they will try to decide whether or not the content sufficiently meets 
their interests and, if not, predict which page at the next level will be likely 
to become a more interesting one. In predicting the next-level contents, 
they will examine the anchor texts of various hyperlinks inside the current 
page. Thus, the probability, pk, of reaching the next-level node k given the 
interest entropy, Hm, of entity m can be computed as follows: 

where d* (P,, Ck)  denotes the weighted distance between the preferences 
of entity m and the contents of node k given the entity's interest entropy 
Hm - 

3.  Recurrent entities: Recurrent entities are those who are familiar with the 
Web structure and know the whereabouts of interesting contents. They 
may have frequently visited such websites. Each time when: they decide to 
forage further, they know exactly the whereabouts of the pages that closely 
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match their interest profiles. In this case, the probability of selecting a Web 
page at the next step can be defined as follows: 

1, if d* (P,, Ck)  = min(d* (P,, c ~ ) ) ,  j = 1,. . . , h, 
Pk = { 0, otherwise. (6.26) 

6.3.3.2 Preference Updating 

An entity updates its preference over time, depending on how much infor- 
mation on interesting topics it has found and how much it has absorbed such 
information. Generally speaking, the update of the preference weights in the 
interest profile of an entity reflects the change of its continued interest in cer- 
tain topics. 

When entity m reaches and finishes reading page n, it will update its interest 
according to the content vector of page n. The specific updating rule is defined 
as follows: 

P,(T) = P,(r - 1) - A .  Cn, (6.27) 

pw;(r) = 0, forpwk(r) < 0, i = I , . .  . , M ,  (6.28) 

where X denotes an absorbing factor in [0,1] that implies how much informa- 
tion is accepted by an entity on average. Pm(r) and Pm(r - l) denote the 
preference vectors of an entity after and before accessing information on page 
n, respectively. 

6.3.3.3 Motivation and Reward Functions 

As mentioned in Section 6.3.2.3, the motivational support for an entity plays 
an important role in information foraging. Depending on the support value, an 
entity will decide whether or not to forage further to the next-level Web pages. 
In what follows, we will describe how an information foraging entity aggre- 
gates its motivational support based on the associated motivation and reward 
functions. 

Recall that there are three terms in Equation 6.17. The first term, St, denotes 
the influence of initial and previously aggregated foraging support. The second 
term, AMt, denotes the motivational (or patience) loss in information foraging. 
It changes along with the latency, i.e., the time to find information. The third 
term, ARt, denotes the reward received after finding relevant information. 

There are many ways to compute AMt, which can be generally characterized 
as follows: 

AMt = -(AM: + AM:), (6.29) 

where AM: denotes the constant decrement in AMt at each step, and AM: de- 
notes the variable factor that dynamically changes at each step. In our study, 
we propose the following models of AM:: 
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1. As earlier studies have shown that the empirical distribution of waiting time 
to access Web pages follows a log-normal distribution [GVU, 2001, Hel- 
bing et al., 2000b1, it is reasonable to believe that the distribution of moti- 
vational loss will be a log-normal function: 

where p, and am denote the mean and variance of the log-normal distri- 
bution of AMY, respectively. 

2. As the patience or interest of an entity in carrying on information foraging 
decreases as the number of required foraging steps increases, we may also 
adopt the following mechanism for dynamically updating the motivational 
loss: 

AM: = ame'Ym.ste~ (6.31) 

where a, and y, denote the coefficient and rate of an exponential function, 
respectively. step denotes the number of pages or nodes that an entity has 
continuously visited. 

Next, let us define the reward function in Equation 6.17. In our study, we 
model the reward received by an entity at each step as a function proportional 
to the relevant information that the entity has absorbed. In our model, since the 
change in the preference weights of an entity reflects the information that the 
entity has gained, we can write the reward function as follows: 

Note that the reward, ARt, for an entity is always greater than or equal to 
zero. It provides the entity with the energy to forage on the Web. On the 
other hand, the motivational loss, AMt, of the entity is always negative, which 
prevents the entity to forage further. Therefore, the total support for an entity at 
the current step can be aggregated based on the support received at the previous 
steps and the changes in the above mentioned motivational loss and reward 
functions. 

6.3.3.4 Foraging 

Having defined the artificial Web space, the interest profile, and the support 
function of an entity, in what follows we will provide an outline of steps for 
simulating information foraging behavior of entities in the artificial Web space. 
We assume that the entities will start to forage from a homepage that contains 
links to other Web pages of various topics. When the support for an entity 
is either below a lower bound or above an upper bound, the entity will stop 
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information foraging; otherwise, it will select and move to the next-level page. 
The specific steps are summarized in Algorithm 6.2. 

Algorithm 6.2 The foraging algorithm. 
Initialize nodes and links in artificial Web space; 
Initialize information foraging entities and their interest profiles; 
for each entity m do 

while support S < max-support, and S > min-support, do 
Find hyperlinks inside node n where entity m is visiting; 
Select, based on pk, a hyperlink connected to a next-level page; 
Forage to the selected page; 
Update preference weights in the entity's interest profile based on 
Equations 6.27 and 6.28; 
Update the support function of entity m based on Equation 6.17; 

end while 
if support S > max-support, then 

Entity m is satisfied with the contents and leaves the Web space; 
else 

Entity m is dissatisfied and leaves the Web space; 
end if 

end for 

In the next section, we will present simulated foraging results and compare 
them with some real-world empirical datasets for validation. 

6.4. Experimentation 
In this section, we will describe several experiments in which the preceding 

given model of information foraging entities is implemented and simulated in 
the artificial Web space. The objective of these experiments is to validate the 
entity model using some empirically obtained Web log datasets. Specifically, 
we want to examine whether or not the strong regularities that emerge from 
empirical Web log datasets can be generated in the simulations using the in- 
formation foraging entities. If so, we can claim that the computational model 
proposed, based on the idea of information foraging, characterizes the behavior 
of human Web surfing that generates empirical Web regularities. 

6.4.1 Experiments 
In our experiments, we will apply the steps as outlined in the preceding 

section to initialize and control information foraging entities. As entities un- 
dertake their foraging sessions in the artificial Web space, we will record their 
surfing depth (steps) distribution and the rank-frequency distribution of link 
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Table 6.1. Parameters in Experiment 6.1. 

Parameter Value 

Degree-of-coupling, r 
Number of entities 
Number of nodes 
Number of topics 
Tc 
AM: 
AM: 

clicks. The frequency of link clicks refers to the number of times for which a 
link is selected by entities. It is also called 'link-click-frequency'. 

Experiment 6.1 We initialize 5,000 entities foraging according to the above 
given motivational support and decision models for three categories of for- 
aging entities. In this experiment, we assume that the interest projiles of the 
entities follow a power-law distribution and the contents of Web pages on vari- 
ous topics follow a normal-like distribution. Detailed experimental parameters 
are given in Table 6.1. We are interested in studying the distributions of entity 
foraging depth and link-click-frequency. 

Figures 6.1-6.4 present the statistical distributions of foraging depth and 
link-click-frequency as obtained in Experiment 6.1 for recurrent and rational 
entities, respectively. 

From Figures 6.1-6.4, we can note that there do exist strong regularities in 
the foraging behavior of entities in the Web space. The cumulative probability 
distribution of entity steps in accessing pages follows a heavy-tail distribution. 
It is interesting to observe from Figures 6.2 and 6.4 that the distributions of 
link-click-frequency exhibit a power law. Similar results on the distribution of 
website popularity have been empirically observed and reported, in [Huberman 
and Adamic, 1999bl. 
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Figure 6.1. Cumulative distribution of foraging depth (steps) with recurrent entities in Exper- 
iment 6.1, where '.' corresponds to experimental data and '-' corresponds to a linear regression 
fitted line. The tail of the distribution follows a power-law distribution with power PC = -1.843 
and the residual of linear regression a = 0.011. 6 denotes entities' satisfaction rate (i.e., the 
ratio of the number of satisfied entities to the total number of entities what have surfed on the 
Web). 

In obtaining the plots of Figures 6.1-6.4, we have applied a weighted lin- 
ear regression method, in which we assign the probability at each depth or 
link-click-frequency with the frequency of the depth or link-click-frequency 
occurrence. This implies that the higher the occurrence rate of a depth or a 
link-click-frequency is, the higher the weight will be. 

6.4.2 Validation Using Real-World Web Logs 
In order to validate our model, we will use real-world Web log datasets and 

compare their corresponding empirical distributions with those produced by 
information foraging entities as mentioned above. 

The first dataset is NASA Web log that recorded all HTTP requests received 
by the NASA Kennedy Space Center Web server in Florida from 23:59:59 
August 3, 1995 to 23:59:59 August 31, 1995.' Before we plot the distributions, 
we first filter the dataset by keeping only the requests that asked for html files. 
This allows us to remove the noisy requests that were not directly sent by 

 h he dataset is available from http://ita.ee.lbl.gov/htmUcontrib/NASA-HiTRhtml. 
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Figure 6.2. Distribution of link-click-frequency with recurrent entities in Experiment 6.1. 
The tail follows a power-law distribution with power ,@ = -1.396, as obtained by weighted 
linear regression. 

users, such as the requests for image files. Here, we regard a user session as 
a sequence of a user's continuously browsed pages on the Web, which can be 
derived from the filtered dataset. To obtained the user sessions, we assume that 
the continuous requests from the same IP correspond to the same user. We also 
assume that a user session ends if the idle time of a user exceeds a threshold of 
30 minutes. 

In the filtered NASA dataset, there are 333,471 requests in 118,252 user 
sessions. The average depth of surfing by users is 2.82 requests per user. In 
addition, there are 1,558 nodes and 20,467 links found in the dataset that were 
visited by users. The average links per node is around 13. 

The distributions of user surfing depth and link-click-frequency for the 
NASA dataset are shown in Figures 6.5 and 6.6, respectively. 

The second dataset is from the website of a laboratory at Georgia Institute 
of Technology (GIT-lab), which recorded the requests from March 26, 1997 to 
May 11, 1997. We preprocess the data in the same way as we did for the NASA 
data. As a result, we have found that there are 24,396 requests and 6,538 user 
sessions contained in the filtered dataset, an average of 3.73 requests per user. 
Also, there are 1,147 nodes and 6,984 links visited by users. The distribu- 
tions of user surfing depth and link-click-frequency for the ~ 1 ~ ; l a b  dataset are 
shown in Figures 6.7 and 6.8, respectively. 
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Figure 6.3. Cumulative distribution of foraging depth (steps) with rational entities in Experi- 
ment 6.1, where '.' corresponds to experimental data and '-' corresponds to a linear regression 
fitted line. The tail of the distribution follows a power-law distribution with power PC = -2.179 
and the regression residual o = 0.02. 6 denotes entities' satisfaction rate. 

Now, let us compare the empirical distributions of Figures 6.5-6.8 with the 
distributions of Figures 6.1-6.4 as generated by information foraging entities in 
the artificial Web space. We can note that the results are quite similar, from the 
shapes of the distributions to the parameters of the fitted functions. The NASA 
dataset reveals emergent regularities closer to those produced by rational enti- 
ties as in Figures 6.3 and 6.4, whereas the GIT-lab dataset presents emergent 
regularities closer to those produced by recurrent entities as in Figures 6.1 and 
6.2. These results demonstrate that our white-box model, incorporating the be- 
havioral characteristics of Web users with measurable factors, does exhibit the 
regularities as found in empirical Web log data. The foraging operations in the 
model correspond to the surfing operations in the real-world Web space. 

In addition to the distributions of user surfing steps in accessing pages and 
link-click-frequency, we are also interested in the distribution of user surfing 
steps in accessing domains or topics - an issue of great importance that has 
not been studied before. We define the number of entity foraging steps in ac- 
cessing domains as the number of domains that an entity has visited, and define 
entity satisfaction rate as the ratio of the number of satisfied entities to the to- 
tal number of entities after they have completed surfing. Figures 6.9 and 6.10 
present the distributions of foraging steps in accessing domains by recurrent 
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Figure 6.4. Distribution of link-click-frequency with rational entities in Experiment 6.1. The 
distribution follows a power-law distribution with power PI = -1.987, as obtained by weighted 
linear regression. 
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Figure 6.5. Cumulative distribution of user surfing steps as observed from the NASA Web 
log data. The distribution follows a heavy tail with the tail's scale of PC = -2.669. The linear 
regression residual s is about 1.174. 
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Distribution based on NASA Web log data 
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Figure 6.6. Distribution of link-click-frequency as observed from the NASA Web log data. It 
agrees well with a power law of power /3! = -1.620, as obtained by weighted linear regression. 

Figure 6.7. Cumulative distribution of user surfing steps as observed from the GIT-lab Web 
log data. The distribution exhibits a heavy tail with the tail's scale of PC = -1.698. The linear 
regression residual s is about 0.395. 
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Figure 6.8. Distribution of link-click-frequency as observed from the GIT-lab Web log data. 
It agrees well with a power law of power Dl = -1.993, as obtained by weighted linear regres- 
sion. 

Dlstflbutbn based on GIT-lab Web log data 

and rational entities in Experiment 6.1, respectively. From Figures 6.9 and 
6.10, we can readily conclude that the cumulative probability distributions of 
entity steps in accessing domains follows an exponential function. 

Let us now take a look at an empirical dataset on user behavior in accessing 
the domains of a website. The dataset contains Web logs for the Microsoft 
corporate website, recording the domains or topics of www.microsoft.com that 
anonymous users visited in a one-week period in February 1998.~ In this 
dataset, there are 294 domains and 32,711 users, with an average of 3 steps 
per domain. The number of user sessions is 6,336. The average number of 
links among domains passed through by the users is 6,3361294, or 21.55. The 
distribution of user steps in accessing domains is shown in Figure 6.1 1. If we 
compare Figures 6.9 and 6.10 with Figure 6.1 1, we note that the domain-visit 
regularity generated by our model matches the empirically observed domain- 
visit regularity well. 

link number: 8984 

max frequency: 802 

p: -1.993 

S: 0.042 
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L 
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6.5. Discussions 

j 

oS 

In the preceding sections, we have described a model of information for- 
aging entities and shown how this model is derived and used to characterize 

Ilnk4~-frequency 

2 ~ h e  dataset is available from http://kdd.ics.uci.edu/databases/msweb/msweb.html. 
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Figure 6.9. Cumulative distribution of foraging depth in accessing domains by recurrent en- 
tities in Experiment 6.1, where '.' corresponds to experimental data and '-' corresponds to 
a linear regression fitted line. The distribution follows an exponential function with exponent 
Pd = -0.892 and residual a = 0.084. 

empirically observed Web regularities. In this section, we will further investi- 
gate the inter-relationships between the emergent Web regularities as computed 
from our model and the characteristics of user interest profiles and content dis- 
tributions. 

6.5.1 Foraging Depth 
One of our research objectives is to find out how the regularities in user 

navigation are affected by content distributions on the Web. 

Experiment 6.2 We assume that the content distribution in the Web nodes fol- 
lows a power law. We are interested in examining the injuence of different 
content distribution models on entity navigation behaviol: The specijic param- 
eters for this experiment are given in Table 6.2. 

Now, let us compare the distributions of entity foraging depth in accessing 
Web pages as obtained from Experiments 6.1 and 6.2. Figures 6.12 and 6.13 
show the foraging depth distributions of recurrent and rational -entities, respec- 
tively, from Experiment 6.2. We note that the two plots in Figures 6.12 and 
6.13 are almost the same as those in Figures 6.1 and 6.4, respectively. There- 
fore, we conclude that the regularity of entity foraging depth in accessing Web 
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toraging depth in accessing domains 

Figure 6.10. Cumulative distribution of foraging depth in accessing domains by rational enti- 
ties in Experiment 6.1. The distribution follows an exponential function with a smaller exponent 
/3d = -0.357 and residual a = 0.021. 

Figure 6.11. Cumulative distribution of user surfing steps in accessing domains as observed 
from the Microsoft Web log data. The distribution follows an exponential function with /3d = 
-0.141 and residual a = 0.137. 
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Table 6.2. Parameters in Experiment 6.2. 

Parameter Value 

Degree-of-coupling, r 
Number of entities 
Number of nodes 
Number of topics 
Tc 
AM: 
AM: 

pages will not be affected by the models of content distribution in the Web 
nodes. 

Next, we will examine the effect of entity interest profiles on the Web regu- 
larities. For this purpose, we will conduct Experiment 6.3. 

Experiment 6.3 In this experiment, the interest proJiles of entities are created 
based on a normal-distribution model. The specijic parameters are given in 
Table 6.3. We are interested in examining the distributions of foraging depth 
with recurrent and rational entities, respectively. 

Figures 6.14 and 6.15 present the distributions of entity foraging depth in ac- 
cessing Web pages by recurrent and rational entities, respectively, as obtained 
in Experiment 6.3. From Figures 6.14 and 6.15, we note that both distributions 
exhibit an exponential function. As the only difference between the settings 
of Experiments 6.1 and 6.3 is the distribution model of entity interest profiles, 
we suggest that the regularities of power-law distributions observed in entity 
foraging depth in accessing Web pages are largely resulted from the power-law 
distribution of entity interests in various topics. 

6.5.2 Link Click Frequency 
Next, let us take a look at the link-click-frequency distributions in the earlier 

mentioned experiments. Figures 6.16-6.19 present the distributions obtained in 
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Figure 6.12. Cumulative distribution of foraging depth in accessing Web pages by recurrent 
entities in Experiment 6.2, where the content distribution follows a power law, different from 
that of Experiment 6.1. '.' corresponds to experimental data, and '-' corresponds to a linear 
regression fitted line. The obtained distribution follows a power law with power PC = -1.532 
and residual u = 0.015. 

Table 6.3. Parameters in Experiment 6.3. 

Parameter Value 

Degree-of-coupling, r 
Number of entities 
Number of nodes 
Number of topics 
Tc 
AM: 
AMP 
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Figure 6.13. Cumulative distribution of foraging depth by rational entities in Experiment 6.2, 
where the content distribution follows a power law, different from that of Experiment 6.1. The 
distribution follows a power law with power /3 = -1.638 and residual a = 0.013. 

Experiments 6.2 and 6.3, respectively. As shown in the figures, the distribu- 
tions of link-click-frequency remain to be a power law under the conditions of 
different entity interest distribution and content distribution models. 

It should be pointed out that the above results can be established for recur- 
rent and rational entities only. In the case of random entities, the regularities 
in link-click-frequency will disappear. Figures 6.20 and 6.21 show the plots of 
link-click-frequency for random entities in Experiments 6.1 and 6.2, respec- 
tively. 

In fact, if we compare Figure 6.20 with Figures 6.2 and 6.4, and Figure 6.21 
with Figures 6.16 and 6.17, respectively, we can observe that from random en- 
tities to recurrent entities, the power law in link-click-frequency distribution 
will become more and more obvious. The only distinction among the differ- 
ent categories of entities in our information foraging model is their ability to 
predict which one of the linked next-level pages may contain more interest- 
ing contents. Thus, we conclude that the power-law distribution of link-click- 
frequency can be affected by the content predictability of the entities. 

6.5.3 Degree of Coupling 
In Section 6.3.1.3, we introduced a maximum distance threshold between 

two linked Web pages, called degree-of-coupling, r. The larger the value of r 
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Figure 6.14. Cumulative distribution of foraging depth in accessing Web pages by recurrent 
entities in Experiment 6.3, where the interest profiles of entities follow a normal distribution 
model, different from that of Experiment 6.2. '.' corresponds to experimental data, and '-' 
corresponds to a linear regression fitted line. The obtained distribution follows an exponential 
function with exponent PC = -0.181 and residual a = 0.08. 

is, the more links among Web pages belonging to different topics as well as the 
more links per each Web page. Given a certain r ,  the topology of the artificial 
Web space is determined. Entities with multiple interests will more readily 
forage from the contents on one topic to the contents on another topic. On the 
other hand, entities with a single interest will become more obsessive to select 
a direction from many hyperlinks on a page. 

Figure 6.22 shows that the average number of links will increase as r in- 
creases. This result concerning the Web structure is commonly found on the 
real-world Web. The question that remains is what will be a reasonable degree- 
of-coupling for entities. We believe that there should be an ideal r value in our 
model. In order to answer this question, we will conduct Experiment 6.4 to 
examine the results under different r values. 

Experiment 6.4 In this experiment, we will examine the entity foraging depth 
and satisfaction rate with respect to r. In so doing, we will keep the rest of 
parameters the same as those in Experiment 6.2. 

Figures 6.23 and 6.24 show the power values in the observed power-law 
distributions of foraging depth and the average foraging steps, with respect to 
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Figure 6.15. Cumulative distribution of foraging depth by rational entities in Experiment 6.3, 
where the interest profiles of entities follow a normal-distribution model, different from that of 
Experiment 6.2. The distribution follows an exponential function with exponent ,L3 = -0.133 
and residual a = 0.166. 

degree-of-coupling, r ,  respectively. From Figure 6.23, we find that power PC is 
increasing with some fluctuations. From Figure 6.24, we note that the values 
of average step by rational entities are higher than those of recurrent entities. 
The explanation for this result is that the ability to find relevant information 
by rational entities is weaker than that by recurrent entities, and thus rational 
entities must go through more pages in order to be satisfied. Consequently, 
their satisfaction rate will be lower than that of recurrent entities, as shown in 
Figure 6.25. 

Website owners usually hope that visitors can stay longer or surf deeper at 
their websites while viewing information, and at the same time, satisfy their 
interests. Figure 6.26 shows the combined measure of entity foraging depth 
and satisfaction rate. From Figure 6.26, we observe that in order to get an 
optimal effect, the value of degree-of-coupling, r ,  should be set to 0.7 -- 0.8. 
In such a case, the average link number per node is about 11 - 20, as shown 
in Figure 6.22. 
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Figure 6.16. Distribution of link-click-frequency with recurrent entities in Experiment 6.2. 
The distribution tail is approximately a power law with power PI = -1.832, as obtained by 
weighted linear regression. 

Figure 6.1 7. Distribution of link-click-frequency with rational entities in Experiment 6.2. 
The distribution is approximately a power law with power ,L?, = -1.372, as obtained by 
weighted linear regression. 
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Figure 6.18. Distribution of link-click-frequency with recurrent entities in Experiment 6.3. 
The distribution tail is approximately a power law with power P1 = -1.641, as obtained by 
weighted linear regression. 

Figure 6.19. Distribution of link-click-frequency with rational entities in Experiment 6.3. 
The distribution is approximately a power law with power PI = -1.427, as obtained by 
weighted linear regression. 
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Figure 6.20. Distribution of link-click-frequency with random entities in Experiment 6.1. 
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Figure 6.21. Distribution of link-click-frequency with random entities in Gperiment 6.2. 
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Figure 6.22. The average number of links with respect to degree-of-coupling, r,  in Experi- 
ment 6.4. 
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Figure 6.23. Power values, PC, in the observed power-law distributions of foraging depth, 
with respect to degree-of-coupling, r, in Experiment 6.4. '0' corresponds: to rational entities 
and '*' corresponds to recurrent entities. 
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Figure 6.24. The average foraging steps, with respect to degree-of-coupling, r, in Experi- 
ment 6.4. '0' corresponds to rational entities and '*' corresponds to recurrent entities. 
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Figure 6.25. The satisfaction rate, 6, with respect to degree-of-coupling, r, in Experiment 6.4. 
'0' corresponds to rational entities and '*' corresponds to recurrent entities. 
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Figure 6.26. The combined measure of entity foraging depth and satisfaction rate, with re- 
spect to degree-of-coupling, r, in Experiment 6.4. '0' corresponds to rational entities and '*' 
corresponds to recurrent entities. 

6.5.4 Mixed Entity Population 
In real-world Web surfing, different users who visit a certain website can 

have very distinct navigation strategies. Some users may fall in the category of 
recurrent users, while others may be new comers. When the new comers feel 
that the website contains or leads to some contents of interest, they will become 
more likely to visit the website again. It is very important for the designer of a 
website to recognize from emergent Web regularities the underlying dominant 
navigation strategies of users. 

So far, we have observed the regularities produced by three categories of 
information foraging entities with various interest profile distributions. It may 
be noted that recurrent and random entities are two extreme cases, whereas 
rational entities have the ability to predict the next-level contents, which is be- 
tween the abilities of recurrent and random entities. The fact that all categories 
of users may be involved in bringing about the emergent regularities in Web 
surfing has led us to the following question: What will be the distributions 
of foraging depth and link-click-frequency if all three categories of infonna- 
tion foraging entities are involved? In order to examine this case, we have 
conducted Experiment 6.5. 
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Figure 6.27. Cumulative distribution of foraging depth with a mixed population of recurrent, 
rational, and random entities in Experiment 6.5. 

Experiment 6.5 In this experiment, all three categories of entities, i.e., recur- 
rent, rational, and random entities, are involved and the number of entities in 
each group is 5,000. We are interested in examining the distributions of entity 
foraging depth and link-click-frequency. 

Figures 6.27-6.29 present the results of Experiment 6.5. From Figure 6.27, 
it can be observed that there exists a strong regularity in the distribution of for- 
aging depth in accessing Web pages in the case of mixed entity population. The 
obtained result is very similar to the regularities found in empirical Web log 
datasets. Figure 6.28 presents the distribution of foraging depth in accessing 
domains, which, like the real-world statistics, follows an exponential function. 
Figure 6.29 shows the power-law distribution of link-click-frequency. In Fig- 
ure 6.29, the occurrence point of the most probable link-click-frequency is not 
at 1. This is because the number of entities is too large as compared to the 
number of links. 

To summarize, emergent regularities can readily be observed when informa- 
tion foraging entities make use of different navigation strategies. As far as the 
satisfaction rate is concerned, the mixed entity population is relatively easier 
to satisfy than rational entities, but more difficult than recurrent :entities, as we 
have already shown in Figure 6.26. One way to increase the level of satisfac- 
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Figure 6.28. Cumulative distribution of foraging depth in accessing domains with a mixed 
population of recurrent, rational, and random entities in Experiment 6.5. 
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Figure 6.29. Distribution of link-click-frequency with a mixed population of recurrent, ratio- 
nal, and random entities in Experiment 6.5. 
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Table 6.4. Parameters in Experiment 6.6. 

Parameter Value 

Degree-of-coupling, r 
Number of entities 
Number of nodes 
Number of topics 
Tc 
AM: 
AM: 
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tion rate would be to improve the descriptions of hyperlinks so that they are 
topic-specific and informative to foraging entities. 

6.5.5 Satisfaction vs. Unsatisfaction 
In the preceding sections, we have considered and classified entities with 

different navigation strategies depending on whether they are proficient users 
(recurrent), content explorers (rational), or curious users (random). In each 
case, an entity will leave the Web space either with the contents it has found or 
without any success. 

Experiment 6.6 Here, we are interested in the difference in the foraging- 
depth distributions between satisfied and unsatisfied entities. We will use the 
same entity data and the same Web space as those in Experiment 6.2, except 
that the motivation update mechanism for entities will be defined using Equa- 
tion 6.30. The parameters are given in Table 6.4. 

Figure 6.30 shows the distributions of satisfied and unsatisfied recurrent en- 
tities, whereas Figure 6.31 shows the distributions of satisfied and unsatisfied 
rational entities. From both figures, we can observe that the regularities can be 
found in both satisfied entities and unsatisfied entities cases. This experiment 
also demonstrates that the regularities is not affected by the motivation update 
mechanism. From Figures 6.30 and 6.31, we also find that the distribution of 
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Figure 6.30. Cumulative distribution of foraging depth with recurrent entities in Experi- 
ment 6.6, with r=0.7. '0' corresponds to unsatisfied entities and '*' corresponds to satisfied 
entities. 

unsatisfied entities has a heavier tail (i.e., higher values) than that of satisfied 
entities. Figures 6.32 and 6.33 present the parameter distributions in Experi- 
ment 6.6, with respect to the Web structure parameter, degree-of-coupling r .  

6.5.6 Other Factors 
In our study, we have conducted several other experiments to examine the 

possible effects on distribution regularities while changing the number of enti- 
ties, the number of domains or topics, and the parameters for the distribution 
of entity interest profiles and for the content distribution in the Web space. 
The results of our experiments have consistently indicated that altering these 
parameters will not change the regularities of power-law or exponential distri- 
butions as mentioned above, but only alter the shape parameters for the distri- 
butions. This further indicates that the distribution regularities emerged from 
entity foraging behavior are stable and ubiquitous. 

6.6. Summary 
This chapter has presented an AOC-by-prototyping approach to characteriz- 

ing Web surfing regularities. In particular, we have formulated an information 
foraging entity model and have validated this model against some empirical 
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Figure 6.31. Cumulative distribution of foraging depth with rational entities in Experi- 
ment 6.6, with r=0.7. '0' corresponds to unsatisfied entities and '*' corresponds to satisfied 
entities. 
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Figure 6.32. The satisfaction rate, 6, in Experiment 6.6, with r changing ffom 0.5 to 1.1. 
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Figure 6.33. The average steps in accessing domains in Experiment 6.6, with T changing 
from 0.5 to 1.1. 

Web log datasets. Through this example, we have shown the features of AOC- 
by-prototyping in complex systems modeling. 

6.6.1 Remarks on Regularity Characterization 
In Web-based applications, it is a common practice to record Web log data. 

What remains a big obstacle as well as a great challenge in Web log analy- 
sis is to characterize the underlying user behavior from the obtained data. In 
this chapter, we have addressed the problem of characterizing empirical Web 
regularities by means of a white-box, AOC model that takes into account the 
interest profiles, motivational support, and navigation strategies of users. 

Our results have shown that based on this model, we can experimentally ob- 
tain strong regularities in Web surfing and link-click-frequency distributions. 
We can further examine the effects on emergent regularities after certain as- 
pects of the Web space or the foraging behavior are changed. The given results 
as well as the information foraging entity based method are useful for us to 
understand how to develop and structure Web contents, and at the same time, 
how to analyze emergent user behavioral patterns. 

6.6.2 Remarks on AOC by Prototyping 
The AOC-by-prototyping approach is commonly applied to uncover the 

worlung mechanism behind an observed, complex phenomenon or system. In 
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so doing, it starts with a step of hypothesizing and formulating a computa- 
tional model of autonomous entities involved in the system, based on our prior 
knowledge and observations. Next, it makes a transformation from the hypoth- 
esized model to an implemented prototype to characterize its natural counter- 
part. Then, by observing the difference between the natural phenomenon or 
system and the synthetic prototype, we will manually fine-tune the prototype, 
especially the parameters in the behavior and interactions of autonomous en- 
tities. Figure 6.34 presents a schematic diagram of the AOC-by-prototyping 
approach. 

Prototype 

Synthetic 
environment 

Figure 6.34. The AOC-by-prototyping approach, where the trial-and-error process, i.e., iter- 
ative fine-tune and compare steps, is manually performed (as symbolized by a human sign in 
the figure). 

In some way, AOC-by-prototyping can be viewed as an iterative application 
of AOC-by-fabrication with the addition of parameter tuning at each iteration. 
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The difference between the desired behavior and the actual behavior of a pro- 
totype is the guideline for parameter adjustment. The process can be summa- 
rized, with reference to the summary of AOC-by-fabrication in Section 5.8.2, 
as follows: 

1. States, evaluation functions, goals, behaviors, and behavioral rules of an 
entity can be changed from one prototype to the next. 

2. The definition of the environment can also be changed from one version to 
the next. Even the model can be modified completely. 

3. There is an additional step to compare the synthetic model with the natural 
counterpart. 

4. A new prototype is built by adopting steps 1 and 2 above, and repeating the 
whole process. 
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Exercises 
6.1 This chapter presents an entity-based decision model for characterizing 

Web surfing activities and regularities. Generalize the formulations as 
well as algorithms of entity decision, self-aggregated support function, 
and artificial Web space. 

6.2 Apply the model in this chapter and in particular the support function 
to characterize the decision making mechanisms that lead to some self- 
organized regularities or phenomena as empirically observed in natural or 
social settings. Some examples of regularities are immune responses, traf- 
fic behavior, crowd behavior, stock markets, and computer virus attacks. 

6.3 Based on the examples given in this chapter, propose and test a means of 
formally representing and studying the inter-relationships between emer- 
gent regularities and the characteristics of local autonomy oriented mod- 
els. 

6.4 Suggest and implement two strategies for tuning models as in the AOC- 
by-prototyping approach for a scalable application. 

5.5 Perform and validate the experiments as mentioned in this chapter with 
empirically obtained Web client logs. 

6.6 Formulate and incorporate the measurement of correlation dimension into 
the fine-tuning step of the AOC-by-prototyping approach. 

6.7 Provide an alternative representation scheme for characterizing generic 
Web contents (e.g., Web services). 

6.8 The results obtained from an AOC-by-prototyping study can offer fur- 
ther insights into new models and formulations for AOC-by-fabrication 
solutions to certain computational problems. Explain how these results 
(e.g., immune response characterization and information foraging mod- 
eling) may lead to more powerful adaptive computation and distributed 
optimal search techniques, respectively. 



Chapter 7 

AOC in Optimization 

7.1. Introduction 
Based on the AOC-by-fabrication and AOC-by-prototyping techniques de- 

scribed in the previous chapters, we can start finding a complex system in na- 
ture after which we can model and build an AOC-based problem solver. This 
process is usually an iterative one requiring a certain amount of trial-and-error 
effort. This is certainly not an easy task, especially for optimization problems 
with many factors (or dimensions) to consider. 

AOC-by-self-discovery emphasizes the ability of AOC to find its own way 
to achieve what AOC-by-prototyping can do. The ultimate goal is to have 
a fully automated algorithm that can adjust its own parameters for different 
application domains. In other words, the AOC itself becomes autonomous. 

To illustrate the AOC-by-self-discovery approach, in this chapter we will 
describe a population-based stochastic search algorithm, called evolutionary 
diffusion optimization (EDO), as inspired by diffusion in nature. We will show 
in detail the process of developing EDO. Below is some background infor- 
mation to help readers understand optimization, some common algorithms for 
solving optimization problems, and the diffusion model that inspired EDO. A 
full description of ED0 with an emphasis on the self-adaptive behavior will be 
given, together with a discussion on the behavior and problem solving power 
of EDO. 

7.1.1 Optimization Tasks 

Real-world applications of optimization can be found in the fields of man- 
ufacturing, logistics, finance, bioinformatics, transportation system control, 
spacecraft trajectory optimization, VLSI layout design, etc. To illustrate their 
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characteristic features, two examples in financial engineering and telecommu- 
nication network design are described below. 

7.1.1.1 Investment Portfolio Optimization 

The primary objective of investors is to maximize their returns on invest- 
ment. Each stock has its own risk and returns. To obtain a bigger return, an 
investor should, therefore, be willing to bear a higher risk. However, the will- 
ingness of an investor to take risks decreases as the earning increases. Even 
if it is irrespective of the risk tolerance of an investor, a good feeling on the 
market trend is required before any investment can yield a positive return. 

Common sense tells us "never put all the eggs in one basket." An investor 
usually diversifies its investment in several stocks. In fact, this is a portfolio se- 
lection problem that can be formulated into an optimization problem as follows 
[Perold, 19841: 

Let wi be the weight of stock i that has an expected return ri. Then, the 
expected return of a portfolio, z, of n stocks is 

It can be written as 
T E(z )  = r w, 

where r = (rl, ra, . . , Ti, . . , rn) is the expected return vector and w = 

(wl, w2, , Wi, - , Wn) is the weight vector. 
Correspondingly, the covariance matrix, Q, of the expected return can be 

written as follows: 

Usually, an investor's aversion to risk is represented by a utility function, 
f (z) = 1 - e-", where k > 0 is the risk aversion parameter. 

Given a covariance matrix, Q, a return vector of expected returns, r, and 
a risk aversion parameter, k, then the above portfolio selection problem can 
be formulated as the following maximization problem by considering the ex- 
pected return and its corresponding risk [Perold, 19841: 

In essence, the optimal portfolio is determined by the weighting parameter, 
w. Interested readers are referred to [Perold, 19841 for more details on large- 
scale portfolio optimization. 



AOC in Optimization 153 

7.1.1.2 Telecommunication Network Design 

A telecommunication network connects base stations on different positions 
together where the communication equipment, such as host computers, con- 
centrators, routers, and terminals, is located. Designing a telecommunication 
network is to find the most efficient way to connect the base stations. This 
problem is sometimes called a minimum spanning tree problem. In the follow- 
ing, we will formulate it into an optimization problem. 

Given a group of base stations, V = {1,2, - - 0  , n), and the cost, cij, for 
connecting two stations i  and j ,  the problem is actually to determine a graph 
G = (V,  E),  where E = { ( i ,  j )  I i ,  j E V ) ,  as follows: 

where di is the upper bound of the number of links connected to base station i, 
and 

1, if link (i, j) is selected in a spanning tree, 
0, otherwise. (7.6) 

More details on this and similar problems can be found in [Gen et al., 20001. 
To solve the minimum spanning tree problem by a population-based algorithm, 
it is appropriate to encode the tree structure within an autonomous entity. Pos- 
sible autonomous behaviors include pruning one's own tree or exchanging a 
partial tree with another autonomous entity. 

7.1.2 Objectives 
As mentioned previously, the goal of an optimization task can be repre- 

sented mathematically. Consider the goal being written as a function F ( x )  
where x  = { X I ,  2 2 ,  . , x , ) ~  is an n-dimensional vector representing the pa- 
rameters of function F. The optimal solution is represented by F(x*)  such 
that 

The search for x* can be viewed as the minimization of function F. Turning 
the sign in Equation 7.7 around makes the search for x* a maximization task. 
They can collectively be called global optimization tasks [Torn and Zilinskas, 
19891. 

There are several challenges any search algorithm must face. First, the land- 
scape of the function to be optimized is unknown. Unimodal functions can 
be monotonic in nature and the search is easy once the downhill direction is 
found. However, finding the direction of the search landscape is not a simple 
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task. Multimodal functions, on the other hand, have many suboptimal solutions 
where a search algorithm is likely to be trapped. 

Secondly, there is usually no linear relationship between changes made to 
the function variables and the corresponding change in the function value. This 
credit assignment problem confuses, if not misleads, the search algorithm. 

Thirdly, search algorithms do not normally jump directly to the optimal so- 
lution, but make incremental changes in small steps instead. Making big steps 
is not always a better strategy, especially when the optimal solution is close by. 
In contrast, infinitesimal changes are detrimental to the effort to escape from a 
local optimum. Therefore, it is crucial to choose a step size appropriate to the 
situation prevalent during the search. 

Finally, a population-based search algorithm needs to maintain a sufficient 
diversity during the whole course of the search so that the search space is ade- 
quately sampled. 

Many algorithms have been developed over the years to tackle the chal- 
lenging task of global optimization [Horst and Pardalos, 1995, Horst and Tuy, 
1990, Mockus, 19891. In the absence of prior knowledge about the search 
landscape, stochastic methods, such as simulated annealing [Kirkpatrick et al., 
19831 and population-based incremental learning [Baluja, 1994, Baluja and 
Caruana, 19951, have been proven to be effective. They attempt to locate the 
optimal solution by generating sampling points probabilistically. Methods in- 
spired by nature that are equally successful include evolutionary algorithms 
[Back et al., 19971, bacterial chemotaxis [Miiller et al., 20021, and differential 
evolution [S torn and Price, 19971. 

In order to demonstrate the AOC-by-self-discovery approach in optimiza- 
tion problem solving, a new population-based stochastic search algorithm, 
called evolutionary diffusion optimization (EDO), will be presented in this 
chapter. Unlike the population-based algorithms mentioned above, the popula- 
tion size in ED0 is not fixed because it is very lenient towards poor performers 
in the population. This is a major departure from the normal practice of many 
nature inspired algorithms, such as evolutionary algorithms, particle swarm 
optimization [Kennedy, 19971, cultural algorithm [Reynolds, 19941, and ant 
colony optimization [Dorigo et al., 19961. Moreover, candidate solutions are 
changed based on landscape information gathered by entities in the same fam- 
ily. The right to reproduce is also granted based on local competition. We will 
give a more detailed discussion on the commonalities and differences between 
ED0 and the above nature inspired algorithms later in Section 7.7.2. 

The AOC-based method, EDO, is specifically designed with the following 
objectives: 

1. To learn the search landscape by group efforts and information sharing; 

2. To maintain a high population diversity; 
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3. To automatically adjust search step sizes. 

7.2. Background 
Before we go into details on the proposed AOC-by-self-discovery approach 

to global optimization, we will describe below two well-known stochastic 
search algorithms as well as diffusion in natural systems, which are the in- 
spiration sources of our E D 0  method. 

7.2.1 Common Stochastic Search Algorithms 

To find the optimal solution, different methods have been proposed. There 
are methods that look for exact solutions to a given optimization problem by 
performing some procedures iteratively with a set of deterministic behaviors. 
There are also methods that behave in a non-deterministic or stochastic way. 
In the context of AOC algorithms, the latter is more relevant to the discussion 
and useful for benchmarking purposes. 

7.2.1.1 Simulated Annealing 

Simulated annealing is a stochastic search algorithm that mimics the anneal- 
ing procedure in physics. When applied to optimization problems, the starting 
point is randomly generated. Subsequent sampling points are chosen by mak- 
ing random changes to a current point. A new point is accepted if its function 
value is not greater than the point at hand. Otherwise, it will accepted proba- 
bilistically. The difference between the function values of the current and the 
new point, together with a gradually decreasing temperature parameter, deter- 
mines the chance of a worse point being accepted. The temperature parameter 
also affects the amount of changes at each iteration. Hence, changes at the 
beginning of the search are relatively bigger than those at latter stages. The di- 
versity in the samples generated is maintained by the point generation function. 
The crucial factor to success is the rate at which the temperature parameter is 
decreased, which is problem dependent. Adaptive simulated annealing [In- 
gber, 19961 tackles this problem by periodically adjusting the bounds of the 
temperature based on the system performance. 

7.2.1.2 Evolutionary Algorithms 

Evolutionary algorithms (EA) exist in many different forms, such as ge- 
netic algorithms (GA) [Holland, 19921, evolutionary programming (EP) [Fo- 
gel et al., 19661, and evolution strategies (ES) [Schwefel, 19951. Recently, 
fast evolutionary programming (FEP) [Yao et al., 19991 has been proposed as 
an improvement over the canonical evolutionary programming and has been 
shown to be superior in optimizing a large number of functions. The mutation 
operator makes changes to the function variable based on a randomly chosen 
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value from a Cauchy function, which is similar to a Gaussian function with 
zero mean but with a wider spread. Therefore, there is a high probability of 
making zero and small changes with occasionally large changes. The adoption 
of the Cauchy function has taken care of the step size issue effectively. In ad- 
dition, FEP adapts the spread of mutations over time. Hence, adding further 
adaptation to the search step size. Mutation also helps maintain the population 
diversity. The selection process in FEP tackles the credit assignment prob- 
lem by admitting better performers to the next generation. The same Cauchy 
function has also been used in the fast evolution strategies (FES) algorithm to 
improve the performance of its canonical counterpart [Yao and Liu, 19971. 

7.2.1.3 Adaptive Evolutionary Algorithms 

Adaptive evolutionary algorithms [Angeline, 1995, Back, 1997, Grefen- 
stette, 1986, Hinterding et al., 19971 have been proposed that automatically 
tune some of the parameters related to the algorithms, such as mutation rate 
[Back, 1992, Back and Schutz, 1996, Gzickrnan and Sycara, 1996, Schwe- 
fel, 1981, Sebag and Schoenauer, 1996, Williams and Crossley, 19971, mu- 
tation operator [Liang et al., 1998, Michalewicz, 1994, Swain and Morris, 
2000, Yao et al., 19991, crossover rate [KO and Garcia, 1995, Smith and Foga- 
rty, 19961, crossover operator [Angeline, 1996, KO et al., 19961, and population 
size [Williams and Crossley, 19971. They usually track changes in progress 
measures, such as online and offline performance [Grefenstette, 19861, the ra- 
tio of average fitness to the best fitness, and the ratio of the worst fitness to 
average fitness, among others. 

Meta-EA is another group of self-improving EA that does not rely on the 
specific instruction of the designer [Freisleben, 19971. An EA [Back, 1994, 
DeJong, 1975, Freisleben and Hartfelder, 1993a, Freisleben and Hiirtfelder, 
1993bl or another intelligent system [Chung and Reynolds, 2000, Herrera and 
Lozano, 1998, Lee and Takagi, 1993, Tettamanzi, 19951 is used to control a 
population of EA in the way similar to an EA optimizing the parameters of the 
problem at hand. 

Other examples of adaptive algorithms include the evolution of emergent 
computational behavior by employing a GA to evolve the rules of a cellular 
automaton for a synchronization task [Crutchfield and Mitchell, 1995, Das 
et al., 1995, Hordijk et al., 19981 and for generating test patterns for hardware 
circuits [Chiusano et al., 19971. A variant of the latter example employs a 
selfish gene algorithm [Corno et al., 20001. 

7.2.2 Diffusion in Natural Systems 
Diffusion in nature and the successful application of the diffusion models 

to image segmentation (see Section 2.3.2) have inspired the evolutionary dif- 
fusion optimization (EDO) algorithm, which attempts to tackle the task of op- 
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timizing multi-dimensional functions. Specifically, building on these models, 
ED0 is designed to include strategies to learn the trend of the search space, 
while forming chains of information flow to facilitate the small step explo- 
ration of the search space. This section describes in more detail the diffusion 
models observable from natural systems. 

The study of human geography categorized reasons for human migration 
into push factors and pull factors [Bednarz, 2000, Clark, 19861. Push factors 
relate to undesirable conditions, such as poor living conditions, lack of jobs 
and overcrowding. Pull factors are those positive factors that attract people to 
relocate, such as jobs and better living conditions. Two forms of migration 
can also be identified. Step migration refers to a series of local movements, 
such as moving from village to town, then to city. Chain migration refers to a 
more drastic change beyond the local region and is usually assisted by people 
who have already emigrated. The availability of information seems to be an 
important factor that helps people decide when and where to migrate. 

The important lesson to learn for function optimization is that once the land- 
scape of the function to be optimized is known, finding the optimal solution 
becomes trivial. The question is how to capture the trend. A search algorithm 
will need past experiences to inform it of the possible unsuccessful moves 
(push factor) and successful moves (pull factor). 

In addition, knowledgeable people can help others decide whether to move 
or not. In essence, whoever has captured the trend of the search space can help 
others make better moves by sharing their knowledge. On the other hand, as the 
human migration model shows, the chance of finding a solution can possibly 
be enhanced by making small step migrations. 

7.3. E D 0  Model 
The ED0 model maintains a population of autonomous entities that will 

decide for themselves what to do regarding the search. A set of primitive be- 
haviors have been defined in the evolutionary model. Algorithm 7.1 shows the 
major steps in EDO. 

Entities in ED0 are divided into two categories: active and inactive. Ac- 
tive entities are those that perform the search task for the optimal solution. 
They are engaged in diffusion behavior and negative feedback. In contrast, 
inactive entities are those that have found positions better than those of their 
parents, which may not necessarily correspond to suboptimal or global optimal 
solutions. These entities will not diffuse any more, but perform reproduction 
behavior and give positive feedback again to their parents. ED0 will control 
the population size via the aging behavior of entities. It will also adapt some 
global parameters. The following sections detail the primitive behaviors of 
entities and several global parameters in an ED0 system. 
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Algorithm 7.1 The ED0 algorithm. 
while (the number of entities > 0) and (the number of iterations < limit) do 

Evaluate an entity; 
if the entity performs better than its parent then 

Get positive feedback; 
Reproduce; 
Its parent becomes inactive; 

else 
Get negative feedback; 
Diffuse; 
Age; 

end if 
end while 

Procedure Diffuse 
if rand() > Prand-move then 

Random-move; 
else 

for each variable do 
Select its step direction and size; 

end for 
end if 

Procedure Reproduce 
quota t f (f itness); 
Create a new probability matrix; 
for each offspring do 

Copy variables and point to the new probability matrix; 
Diffuse; 

end for 

Procedure Age 
age t age +l; 
if (its fitness < its parent's fitness x threshold) or 
((age > lifespan) and (its fitness < the average value)) then 

Remove; 
end if 

7.3.1 Diffusion 
Entities in ED0 explore uncharted positions in the solution. space by per- 

forming their diffusion behaviors. A diffusion behavior is an operation through 
which an entity modifies its object vector, which is a set of values correspond- 
ing to the variables of the function to be optimized. The object vector V can be 
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represented as follows: 

where LB and U B  are the lower and upper bounds, respectively. All function 
variables can take values within these bounds. 

Entities in E D 0  have two types of diffusion behavior: rational-move and 
random-move. In both cases, the updated object vector becomes the new posi- 
tion of the entity in the solution space. However, if an entity remains stationary 
after diffusion (i.e., it fails to diffuse and stays at its current position), the pro- 
cess will be repeated. 

Rational-move: In the majority of time, an entity performs rational-move 
behaviors. In so doing, it modifies its object variables by randomly choos- 
ing the number of steps to take, according to a probability matrix (see Sec- 
tion 7.3.4). The actual amount of change is the product of the current step 
size and the number of steps chosen: 

k 

6vi = min{k I rand() < pi j, k 5 y), (7.10) 
3=-Y 

where vi is the ith function variable, 6vi is the number of steps to be taken, 
A is the step size, y is the maximum number of allowable steps towards 
either end of the bounds in the search space, and pij is the probability of vi 
making j step(s). 

Random-move: As an entity becomes older and has still not located a 
position better than that of its parent, it will decide to perform a random- 
move behavior with an increasing probability. The probability, P,,, to 
perform a random-move is given by: 

P,, = exp [ - - 0,a]7 

where a is a scaling factor that decides the degree to which the random- 
move is to be exercised, O is the maximum lifespan of an entity, and a is 
the age of an entity. 

The direction of movement is first chosen uniformly between towards the 
upper bound, towards the lower bound, and no move. In the case that a 
move is to be made, a new value between the chosen bound and the current 
value is then randomly selected. Specifically, 
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where r is the set of boundaries between which a new value will be cho- 
sen for object variable vi, and s is the set of probabilities for choosing the 
entries in r. 

7.3.2 Reproduction 
At the end of an iteration in EDO, the fitness values of all active entities are 

compared with those of their parents, which have temporarily become station- 
ary. All entities with higher fitness values will perform a primitive behavior, 
called reproduction. A reproducing entity will replicate itself a number of 
times as decided by a quota system. The offspring entities are then sent off to 
new positions by rational-moves. 

Fitness, f ,  in ED0 measures an entity's degree of success in the course 
of the search for the optimal solution. It is also used as a basis to determine 
various primitive behaviors. For simplicity, the objective function value is used 
as fitness in ED0 if the task is minimization. The reciprocal of the function 
value can be used as fitness if ED0 is used in a maximization task. 

7.3.2.1 Reproduction Quota 

The number of offspring entities to be reproduced, i.e., quota q, is governed 
by the entity's fitness and two system-wide parameters: maximum offspring, 
R, and maximum population size, n. The following two rules are applied in 
succession: 

Differentiation Rule. An entity is given the full quota to reproduce only 
if its fitness is significantly above the population average and will gradually 
decrease as the fitness decreases. Therefore, the quota for an entity e having 
fitness f is: 

if k < w l ,  
f - 

if wl<L<wwp, (7.15) 
f - 

R - 2, otherwise, 

where 7 is the population average fitness, and wl and w:! are the intervals in 
the step function. 
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Population Size Rule. Further to the above differentiation scheme, the 
reproduction quota is subjected to a further restriction to avoid overcrowding: 

where C is the size of the entity population, and Il is the maximum population 
size. 

7.3.2.2 Rejuvenation 

An inactive entity will be allowed to perform a primitive behavior, called 
rejuvenation, in order to spawn new offspring if the following two conditions 
are satisfied: 

All its offspring entities are dead. 

w Its fitness is better than the population average. 

The main idea behind the rejuvenation behavior is that an inactive entity has 
been receiving positive or negative reinforcement signals from its offspring 
(described below), its probability matrix contains the latest information regard- 
ing the neighborhood landscape. It would be a waste if this potentially useful 
information is discarded. A rejuvenated parent will be given the full quota, R, 
and then subjected to the population size rule (Equation 7.16) to reproduce its 
offspring. 

7.3.3 Aging 
Through the aging behavior of entities, E D 0  keeps track of the unproductive 

moves throughout the search. By limiting the number of unsuccessful moves, 
ED0 can properly channel resources to explore the search space. However, 
sufficient time should be put aside to allow each entity to survey its neighbor- 
hood. 

The age, a, of an entity in E D 0  denotes the number of iterations for which 
this entity has survived since its birth. Once an entity becomes a parent, the 
age does not need to be updated any more. All entities in E D 0  will only be 
allowed to perform search for a certain number of iterations, because we do 
not want to have too many non-contributing entities in the system. The global 
lifespan information, 0, is the maximum number of allowable iterations for 
which any entity can survive. 

At the end of each iteration, all entities perform an aging behavior to in- 
crease their ages by one. Entities whose age is greater than the lifespan limit 
are eliminated from the system. However, it is necessary to provide exceptions 
to this rule to either retain the exceptionally good performer, or prematurely 
eliminate the exceptionally poor ones. 



162 AUTONOMY ORIENTED COMPUTING 

rn Extended life: The lifespan limit of an entity is extended by one iteration 
when it expires, if its fitness is higher than the population average. 

Sudden death: An unsuccessful entity will be eliminated, if its fitness is 
less than a certain percentage of the fitness of its parent. The threshold is 
set at 80% in the experiments reported later. 

7.3.4 Feedback 
Each entity in E D 0  performs an information-passing behavior to pass in- 

formation back to its parent, if it has moved to a better or worse position. This 
information allows the parent to update its probability matrix, which is shared 
among its offspring. 

A probability matrix, p, contains the likelihood estimate of success with 
respect to the direction of a move. Specifically, the probability matrix is an 
n x m matrix representing n function variables to be optimized and m possible 
steps (including y = (m - 1 ) / 2  steps towards the upper bound and the lower 
bound, respectively, and the current position). A global step size parameter, A,  
governs the unit of change in all function variables. The product of A and the 
number of steps becomes the final modification to affect on V. Formally, 

At the beginning of the search, all entries are initialized to l /m,  which 
means they are equally likely to make any of the possible moves. The prob- 
ability matrix will be continuously updated as a result of the local feedback 
behavior of an entity. As the probabilities for various steps are updated, E D 0  
begins to differentiate between the good and bad directions of moves with re- 
spect to the initial position of the ancestor. The probability matrix, therefore, 
facilitates information sharing between siblings. 

Sharing this information is made possible by having all offspring entities 
of the same parent use the same probability matrix. The motivation behind 
this is that a trend is a kind of local information, it will become increasingly 
irrelevant to places further and further away from that of a parent entity. Hence, 
it is necessary to update the probability matrix using new local information. 

rn Positive feedback: A successful move, which may happen after taking 
many moves, is defined as a gain in fitness. In order to bias the future 
moves of an entity's siblings to its own successful move, ,we update the 
probabilities in the parent's probability matrix, which correspond to the 
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changes made in the successful entity's object vector. The updating rule is 
as follows: 

where pij is the probability that relates to the ith function variable and jth 
step size, and /3 is the learning rate. 

Negative feedback: In order to steer the siblings of an entity away from a 
non-optimal area in the search space, an entity will update the probability 
matrix of its parent after each unsuccessful move, using the following rule: 

where p is the same learning rate as used in positive feedback. 

As compared to positive feedback, negative feedback is a finer grain update 
as it happens after each step. Moreover, the use of a multiplicative scaling fac- 
tor ensures that the probability remains greater than zero at all time. The whole 
probability matrix is normalized after updating within the set of probabilities 
for each dimension. 

In summary, an entity, e, in the population, P, maintained by ED0 is a tuple 
(V,p,  a ,  f ) ,  where V is the object vector, p is the probability matrix, a and f 
are scalars representing the age and fitness of entity e, respectively. While V 
contains the values of the potential solution, p, a,  and f are crucial to the search 
process of EDO. 

7.3.5 Global Information 
Various system-wide parameters have been mentioned in the previous sec- 

tions. They either control the process of the search or act as parameters to some 
of the features in EDO. Below is a summary of the system-wide parameters: 

1. Step size (A): It is the size of a step to be taken during a rational-move. 
It is used in combination with the probability matrix to decide what the 
actual change should be. For example, if two steps towards the upper limit 
were chosen based on the probability distribution in the probability matrix, 
a value equal to two times of A will be added to the function variable in 
question. 

2. Lifespan (O): This is the duration, in iterations, given to an entity to per- 
form a search. It aims at limiting the amount of unsuccessful exploration 
that any entity can perform before it is eliminated. 

3. Maximum offspring (R): This is the maximum number of offspring any 
reproducing entity is allowed to spawn at a time. It represents the amount 
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of local exploration an entity is allowed to perform in the neighborhood of 
a good solution. 

4. Maximum population size (IT): This is the upper limit of the number of 
entities, both active and inactive, an ED0 system can keep at any time. 

ED0 has some adaptive behaviors to assist the optimization process. First, 
the step size parameter, A, is reduced according to the golden ratio1 if the cur- 
rent best solution has not been renewed for half of lifespan, 0. The rationale 
behind this reduction is that the entities may be in the neighborhood of a min- 
imum. Therefore, finer steps are required for careful exploitation. Conversely, 
if the population has been improving continuously for some time (in number of 
iterations, again equal to half of lifespan), the step size is increased according 
to the golden ratio (division): 

I+& A = { A * ~ ,  i f ~ < * / 2 , + = ~ ,  
A ,  otherwise, 

where u is the number of times the current best solution has been renewed 
since the step size parameter was last updated, and 4 is the golden ratio. 

ED0 also reduces the maximum population size by a small amount at each 
iteration to increase the selection pressure. 

7.4. Benchmark Optimization Problems 
Four benchmark functions are chosen to test the ED0 algorithm (see refer- 

ences within [Yao and Liu, 1997, Yao et al., 19991). f l  and f2 are unimodal 
functions, while f3 and f4 are multimodal functions: 

 h he golden ratio is one of the roots to the equation s2 - x - 1 = 0, and many visually appealing 
geometrical shapes in nature have a golden ratio dimension [Dunlap, 19971. 
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where 

The unimodal functions are used to demonstrate the hill climbing capability 
of ED0 and the multimodal functions are used to test EDO's ability to escape 
from local minima. 

7.5. Performance of E D 0  
Using the most basic (two-dimensional) form of f l  (Equation 7.23) and f4 

(Equation 7.26) as test cases, this section will present the performance of ED0 
as outlined above. 

The basic form of ED0 consists of primitive behaviors, such as diffusion, re- 
production, aging, and feedback. In order to show the effects of some new fea- 
tures, namely random-move during diffusion (Equation 7.12), step size adap- 
tation (Equation 7.22), and solution rejuvenation, various combinations of the 
basic ED0 with these features are used to optimize the two-dimensional ver- 
sion of f l  (Equation 7.23) for 200 iterations. Figure 7.1 shows the best and 
average function values with the basic ED0 together with one of the three new 
features. Figure 7.2 shows the plots of the same information for the combina- 
tion of the basic ED0 with more than one of the features. 

Basic ED0 for a Good Solution. The basic ED0 is able to find a 
good enough solution, which has a value less than 1, in just 10 iterations (see 
Figure 7.l(a)). This is a period when the diversity in terms of the variety in the 
parameter values is at the highest. The population converges gradually during 
this period. As the diversity decreases, ED0 tends to try out small variations 
to the candidate solutions in the population, and attempts to update the proba- 
bility matrix. As the population moves together closer to the optimal solution, 
a fixed step size will gradually move the candidate solutions across the optimal 
point and over to the other side of the valley in the function value landscape. 
In combination with the fact that ED0 accepts all new points into the solution 
pool, the population average will diverge at a certain point. In addition, what- 
ever direction bias information learned in the probability matrix will suddenly 
become irrelevant. A new learning phase then commences (between iterations 
40-50). This cycle of learning and re-learning can also be observed at the later 
stages of the search (between iterations 100 and 200). 

Another point worth noting is that the new best solution is not discovered at 
every iteration. One may expect that once a trend has been learned and encoded 
into the probability matrix, any new entity having the latest probability matrix 
will simply slide downward towards the optimal solution. This is not found in 
any of the plots in Figure 7.1, because new candidate solutions are generated 
using the probability matrix and the step size. However, this fixed size is be- 
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(a) Basic ED0 @) With adaptive step size 

(c) With random-move (d) With solution rejuvenation 

F g r e  7 . .  The changes in the best and average values of the population when E D 0  searches 
for a solution to the two-dimensional unimodal function fl. (a) shows the result for the ba- 
sic EDO, which has the basic diffusion, reproduction, aging, and feedback mechanisms; (b) 
the adaptive step size strategy modifies how far one step is in EDO, and gives the best result 
with a converging population; (c) random-move, which allows the entities to make big jumps 
instead of relying on the probability matrix for direction selection, gives better results than the 
basic EDO, but the population diverges; (d) solution rejuvenation, which allows the above av- 
erage candidate solution to reproduce when all its offspring entities are dead, does not show a 
significant difference from the basic EDO. 

coming larger and larger relative to the distance between the best solution and 
the optimal solution. 

Adaptation for a Better Result. With a fine tuning mechanism, such 
as the step size adaptation, this problem is eliminated (see Figure 7.l(b)). It 
can also be observed that the adaptive step size feature produces a population 
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(a) With adaptive step size and solution reju- 
venation 

(c) With random-move and solution rejuvena- 
tion 

(b) With random-move and adaptive step size 

(d) With random-move, adaptive step size, and 
solution rejuvenation 

Figure 7.2. The relative performance advantages of step size adaptation, random-move, and 
solution rejuvenation strategies. (a) The combination of step size adaptation and solution rejuve- 
nation does not produce better results than step size adaptation alone; (b) random-move and step 
size adaptation are comparable with step size adaptation alone, but the population average does 
not converge any more; (c) random-move and solution rejuvenation together not only produce 
the worst result, the population also becomes unstable; (d) all three strategies together gives a 
better solution than step size adaptation alone, and the population average does not diverge but 
converges very slowly. 

that is converging at a faster rate than the basic EDO. This is further evidence 
of efficiency gained in utilizing the probability matrix. 

Random Move and Population Diversity. The random-move be- 
havior (Figure 7.l(c)) seems to be malung a more progressive improvement on 
the best solution than the basic EDO. A distinctive feature of random-move 
is that it produces a non-converging, if not diverging, population. Notice that 
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the tail of the population average graph is diverging and the search ends before 
the set limit, at 159 iterations, as the number of entities drops to zero. This is 
somewhat undesirable as the search becomes more unpredictable, but this side 
effect vanishes when random-move is combined with other features. 

Solution Rejuvenation and Solution Quality. The solution rejuve- 
nation feature (Figure 7.l(d)) alone performs almost exactly as the basic EDO. 
It seems this feature is not making a significant contribution in the optimization 
of a unimodal function. 

7.5.1 Basic ED0 with More Features 
The combination of any two of the three new features shows some interest- 

ing results when optimizing the two-dimensional fi. 

Adaptation and Random Move. Adaptive step size continues to show 
the best performance and shadows the contribution of solution rejuvenation 
(Figure 7.2(a)). A converging population similar to, but slightly different from, 
the one in Figure 7.l(b) is also observed. 

The initial stage of the random-move and adaptive step size combination 
(Figure 7.2(b)) is very similar to the random walk only search. But the later 
stage of the search using both features shows a very steady improvement. How- 
ever, the population is no longer converging and less fluctuation is observed. 

Random Move and Solution Rejuvenation. The combination of 
random-move and solution rejuvenation (Figure 7.2(c)) shows a profile similar 
to random-move alone. However, the population value at the second half of the 
search fluctuates instead of simply diverging. This is due to the fact that the few 
good solutions are not eliminated from the system and allowed to reproduce 
beyond the time when active entities have become extinct. 

Best Result and a Stable Population. When all three new features 
are used, ED0 achieves the smallest value and the population shows a slight 
converging behavior (Figure 7.2(d)). 

7.5.2 Clustering around the Optimal Solution 
This subsection will show a phenomenon of entity clustering around optimal 

solutions. Specifically, it uses the two-dimensional version of fl and f4. For 
the sake of illustration, Figures 7.3 and 7.4 present the shapes and planforms 
of f 1 and f4, respectively. 

Figures 7.5 and 7.6 show the distribution of entities as used to optimize the 
two-dimensional version of fl. They show the behavior of the entities from 
a different perspective. Five entities are positioned randomly on the solution 
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-100 -.,w 

(a) The two-dimensional version of fl 

X~ 

(b) The planfonn of the two-dimensional fi 

Figure 7.3. The two-dimensional unimodal function fi . 

space: three with x-value around -80, one around -20, and one around zero, but 
none is within the central 20 by 20 zone around the origin. 

As the search progresses to iteration 10, more and more entities appear in- 
side the central zone. The entities there will quickly reproduce, providing some 
positive feedback to their parents. This trend continues between iterations 10 
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(b) The planform of f4 

Figure 7.4. The multimodal function f4. 

and 80. Note that there are entities throughout the solution space. This is due 
to the diffusion operations of rational-move and random-move. 

The diameter of the occupied area increases between iterations 10 and 30, 
and shrinks between iterations 30 and 80. This is the phase where the landscape 
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(a) Start (b) Iteration 10 (c) Iteration 20 

(d) Iteration 30 (e) Iteration 40 (f) Iteration 50 

Figure 7.5. The distribution of entities in the search space for two-dimensional unimodal 
function fl. The figures show a gradual increase in the concentration of entities around the 
optimal solution, which is the origin, and along the axes, which are the locally suboptimal 
solutions. 

information has been learned. The entities have learned the direction of the 
fitness landscape in the first period. Then, they zoom in to the origin (the 
optimal solution) in the second period. 

The third observation worth noting is the increase in the number of entities 
along the axes, which can be considered suboptimal solutions, as one of the 
two variables is in its lowest value. 

The number of entities is at its highest point around iteration 80, but drops 
drastically in the next 10 iterations. This is because entities not around the 
origin or along the axes are less fit than the population average and they are 
eliminated eventually. As the entities continue to move towards the origin, the 
entities that are further away from the origin are eliminated, leaving only few 
entities inside the f 0.01 range at iteration 220. 

Figures 7.7 and 7.8 show the distribution of entities for f4.  ED0 spends the 
initial 50 iterations to sample the search space, and builds up the probability 
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(a) Iteration 60 

(d) Iteration 90 

(b) Iteration 70 (c) Iteration 80 

(e) Iteration 100 (f) Iteration 110 

Figure 7.6. The distribution of entities in the search space for two-dimensional unimodal 
function fl. As the search progresses towards the end, the number of entities remaining around 
the suboptimal solutions decreases. 

matrix. At iteration 50, a rough impression of 25 clusters that correspond to the 
25 local minima can be seen (Figure 7.7(d)). The number of entities around 
the local minima continues to grow until iteration 150 when the diameter of 
the clusters starts to diminish. Similar to the patterns in the unimodal case, 
the number of entities along the grid line grows as they are the local minima 
in the close-range neighborhoods. ED0 stops at iteration 200 when the global 
minimum is found. 

7.5.3 Summary 
Adaptive step size achieves the best solution followed by random-move, if 

the function value is chosen as the evaluation criterion for the features. When 
more than one feature are considered, all three features together have a slight 
advantage over adaptive step size alone. It can be concluded that step size adap- 
tation helps exploit existing solutions, while random-move behavior is useful 
for exploring new areas in the solution space. This is one of the most impor- 
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(d) Iteration 50 

(c) Iteration 30 

(e) Iteration 70 (f) Iteration 90 

Figure 7.7. The distribution of entities in the search space for the multimodal function f4.  

Similar to the situation with the unimodal function, there is a gradual increase in the concentra- 
tion of entities around the suboptimal as well as the optimal solutions. 

tant findings from this initial testing. Moreover, entities will tend to spread 
randomly across the search space. But once a suboptimal solution is found, 
they will be reluctant to leave there. The random-move behavior then helps 
push the entities out of the suboptimal region. 

7.6. Experimentation 
The E D 0  algorithm has been used to optimize the above four benchmark 

functions. Several forms of the functions, except function f 4  (which has only 
two free parameters), are tested by increasing the number of free parameters. 
The intention is to test the performance and scalability of EDO. 

7.6.1 Unimodal Functions 
E D 0  has been tested on six f l  functions of 5 to 30 dimensions in increments 

of 5 dimensions. Figure 7.9(a) shows the development of the best solution 
over the iterations. In all the six experiments, E D 0  can successfully find a 
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(a) Iteration 1 10 (b) Iteration 130 

(d) Iteration 170 (e) Iteration 190 (f) Iteration 200 

Figure 7.8. The distribution of entities in the search space for the multimodal function f 4 .  

The search stops at iteration 200 when the target is reached. If the search were to progress 
beyond iteration 200, the number of entities, especially around the suboptimal solutions, would 
decrease gradually. 
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(a) Best value for function fl in 5 to 30 di- (b) Best value for function f2 in 5 to 30 di- 
mensions mensions 

(c) Number of entities in 5-dimensional f 1 (d) Number of entities in 30-dimensional f 1 

(e) Number of entities in 5-dimensional f2 (f) Number of entities in 30-dimensional f2 

Figure 7.9. The best function value found by E D 0  and the number of entities used at each 
iteration for two unimodal functions, fl (x) and f2 (x), in 5 to 30 dimensions. (a)-(b) The num- 
ber of iterations required to reach the target increases with the dimension of the problem; (c)-(f) 
The number of entities required over iterations follows a cycle. A drastic increase corresponds 
to the time when a suboptimal solution is located and a decrease corresponds to a period of 
fine-tuning the probability matrix. 



176 AUTONOMY ORIENTED COMPUTING 

function ~ a l u e  smaller than the target (1 x The time required increases 
from 600 to 4500 iterations as the problem complexity increases from 5 to 30 
dimensions. It can also be observed that lower dimension tasks (5-dimension) 
tend to result in more jumps, i.e., drastic drop in the best solution value after a 
period of no improvement. In contrast, the curves gradually become smoother 
as the dimension of the problem increases. 

Figure 7.9(c) shows the number of entities present in the system at each iter- 
ation. During the initial stage (iterations 1-40), the number of entities has expe- 
rienced two periods of rapid increase. These are the periods when ED0 discov- 
ers some solutions that are better than the randomly generated initial candidate 
solutions. However, when the offspring of these suboptimal solutions do not 
result in improvement, the number of entities decreases until a point when only 
the suboptimal solutions remain. The solution rejuvenation feature then kicks 
in to inject some candidate solutions to the population, preventing the search 
from ending prematurely. The latest additions to the pool have a higher chance 
of success due to the negative feedback from previous failures. Thus the num- 
ber of entities increases. This cycle of increase and decrease in population size 
continues until the maximum number of allowed iterations is reached. Fig- 
ure 7.9(d) shows the same information for 30-dimensional fl as a comparison. 
Similar changes in the number of entities in the system can also be observed 
from the other four experiments. 

The development of the best solution (see Figure 7.9(b)) and the changes in 
the number of entities (see Figures 7.9(e) and 7.9(f)) for f2 follow a pattern 
similar to that of fl. The best solutions achieved within the set time limit are 
around 0.002 and more iterations are generally required. 

7.6.2 Multimodal Functions 
For the multimodal functions tested on EDO, the fitness landscape of f3 

is more rugged than that of f4. Hence, better results are obtained from f4. 
The results of two different runs for f3 are shown in Figure 7.10(a). In the 
5-dimensional f3 task, ED0 finds the optimal solution within 1000 iterations. 
The number of entities required follows a pattern similar to the situation of 
optimizing the unimodal function: The number of entities increases drastically 
when the search is moving towards the optimal solution (beyond iteration 300, 
see Figure 7.10(d)). 

Figure 7.10(b) shows the average and best function values obtained in the 
case of 10-dimensional f3. While the search is able to locate suboptimal so- 
lutions and to escape from most of them, ED0 fails to find the global optimal 
within the given time limit. Note that the population average fluctuates much 
more rapidly and sometimes even becomes very close to the best population. 
As the search progresses without making much improvement, the number of 
entities will decrease due to, for example, the expiry of lifespan. In the worst 
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(a) Best and average function values in 5- (b) Best and average function values in 10- 
dimensional f3 dimensional f3 

(c) Best and average function values in f4 (d) Number of entities in 5-dimensional f3 

(e) Number of entities in 10-dimensional f3 (f) Number of entities in j4 

Figure 7.10. The best function value found by E D 0  and the number of entities used at each 
iteration for two multimodal functions, f3 (x) and f4 (x). (a)-(c) The population tends to diverge 
at the end of the search in f3, showing that E D 0  attempts to improve beyond a suboptimal solu- 
tion; (d)-(f) The total number of entities in a generation increases with the number of successful 
entities, but will drop as some of them are not making sufficient progress. 
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case, only ,those better performing parents remain. The only primitive behavior 
that can take an effect in such a situation is solution rejuvenation, which will 
increase the number of entities in the population once again, and will possibly 
cause the population average to increase as the new offspring diffuses from 
the parents' positions. The corresponding plot for the entity population size in 
Figure 7.10(e) looks like a magnified version of Figure 7.10(d). It is interesting 
to note that the period when ED0 is making the best improvement (between 
iterations 500 and 1000), the population shows the least fluctuation and the 
number of entities is at the highest point. 

ED0 solves the easier f4 without any problem. Figure 7.10(c) shows the 
best and average function values found over time. From the start to around 
iteration 100, the population average is maintained at a relatively stable level, 
well above the best value. However, as the entities struggle to escape from 
the local minimum around 2 (y-axis), most of the entities are eliminated and 
a sudden drop in the population average occurs. As ED0 recovers, via so- 
lution rejuvenation, the population average reaches the level similar to that 
before iteration 100. This cycle of fluctuation happens several times until the 
search reaches its final stage (between iterations 600 and 700). Notice from 
Figure 7.10(f) that the number of entities required for this f4 run is very small 
except at the final stage where a drastic increase is observed. This is probably 
due to the convergence of most, if not all, entities around the global optimal 
solution. This convergent behavior has the side effect of causing the entities 
to reproduce. It is obvious that the downward going side of the spike is absent 
due to the reach of the set target. If the search is allowed to proceed beyond 
this point, the number of entities will probably decrease due to the inability to 
find any solution better than the current best, which is the global optimum. 

7.7. Discussions 

In the preceding sections, we have presented the ED0 algorithm in detail. 
Through experiments on some benchmark optimization problems, we have il- 
lustrated EDO's behavior. In this section, we will address the computational 
cost issue in EDO. In addition, we will compare the performances and features 
between ED0 and other well-known optimization algorithms. 

7.7.1 Computational Cost 

In what follows, we will examine the space and time complexity of the ED0 
algorithm. 
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7.7.1.1 Space Complexity 

Let P ( ~ )  denotes the population of entities at iteration t, which consists of 
(t) the active subpopulation, Pa , and the inactive subpopulation, Pit). Therefore, 

where I 1 denotes the size of the population concerned. The size of the two 
subpopulations changes due to the various local behavioral responses of the 
entities in the previous iteration. For the inactive subpopulation, the number of 
entities is given by: 

where 0 5 vi 5 1 and 0 < p L: 1 are the percentage of inactive entities at 
iteration (t - 1) that no longer have active offspring and whose fitness is below 
average, and the percentage of successful active entities at iteration (t - 1) that 
will reproduce and become inactive, respectively. 

For the active population, all successful entities will replicate themselves 
several times and become inactive, while some below average or old ones are 
eliminated. The number of active entities at iteration t is given by: 

where 0 5 va < 1 is the percentage of active entities at iteration (t - 1) that 
are either too old or under-performing, p is the percentage of good performers 
that have reproduced and become inactive, and Q(x) is the function that gives 
the number of replicas an active entity can produce. 

The upper bound for the size of the inactive population occurs when no 
inactive entity in the previous iteration is eliminated and all active entities will 
reproduce, i.e., p = 1 and vl = 0. Hence, 

Similarly, the upper bound for the size of the active population is reached 
when no active entities is eliminated because of its age or fitness, and all active 
entities become parents and reproduce the maximum number of times, i.e., p 
= 1 and Q(x) = R. As a result, 

In other words, 
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Algorithm 7.2 The adaptive simulated annealing (ASA) algorithm. 

Initialize population ~ ( ~ 1 ;  
Initialize temperature u ( ~ )  according to the annealing schedule; 
while (d t )  > TerminationTemp) and (a target error margin is not reached) 
do 

Evaluate population P ( ~ ) ;  
Generate new population ~ ( ~ 1 ;  
Reanneal temperature u ( ~ )  according to the annealing schedule; 

end while 

= I P L O ) I  x 
(Rt+l - 1) , (since 1 pio) 1 = 0). (7.33) 
(0 - 1) 

Therefore, the maximum offspring parameter, R, is the most important fac- 
tor that will affect the overall space requirement in EDO. 

7.7.1.2 Time Complexity 

The number of function evaluations is the same as the total number of ac- 
tive entities throughout the search. Therefore, the total number of evaluations 
performed by ED0 during t iterations is as follows: 

t 

Total Evaluations = I P ~ )  I = I P ~ O ) ) ~  x 
(Rt+l - 1) 

(7.34) 
j = O  

0-1 ' 

7.7.2 Feature Comparisons 
Several well-known search algorithms share some common features with 

EDO. Without going into too much detail of the algorithms, this section at- 
tempts to highlight some of their major differences. Interested readers are 
encouraged to study the respective references. Pseudocodes for the search al- 
gorithms are included in the following discussion in a format similar to the 
pseudocode for ED0 (see Algorithm 7.1) for easy reference. 

7.7.2.1 Simulated Annealing 

Adaptive simulated annealing [Ingber, 19961 is similar to the classic simu- 
lated annealing. The major enhancements are in the reannealing'process where 
the annealing and the control temperature are adjusted (see Algorithm 7.2). 

Apart from the difference in population size, both ASA and ED0 maintain 
a schedule for modifying the systems parameters. In ASA, the temperature of 
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the cooling process is predetermined to go down gradually. The counterpart in 
ED0 is the modification of the step size. However, EDO's step size can go up 
as well as down depending on the progress over a period of time. 

Another major difference between ASA and ED0 lies in the way they accept 
a worse candidate solution as the starting point of the next iteration. While 
ASA will accept this candidate based on certain probability, ED0 will always 
accept it. The aging mechanism in ED0 allows the system to get rid of poor 
performers after they are consistently performing badly over a period of time. 

7.7.2.2 Evolutionary Algorithms 

A genetic algorithm (GA) has a population of chromosomes (usually of 
fixed size) that are used to represent a candidate solution to the problem at 
hand [Holland, 19921. The chromosome can be imagined as a compartmen- 
talized representation of the parameters for the current problem domain. Each 
randomly generated chromosome in the initial population is given a fitness 
value, which is an assessment of its goodness-of-fit to the problem by a fitness 
function. The fitness function collectively represents the goal to be achieved 
by GA. In each cycle, or generation, of a GA run, pairs of chromosomes are se- 
lected based on the fitness for recombination (crossover) and mutation to create 
new chromosomes. Recombination involves splicing up two parents and ex- 
change part(s) of their chromosomes. Mutation involves changing some part 
of a chromosome to a value allowable for the chosen gene(s). The processes of 
recombination and mutation are performed based on some probabilities (usu- 
ally remaining constant throughout the run). Newly created chromosomes are 
assessed using the fitness function, and will replace their parents if they have 
higher fitness values. The simulated evolution cycle repeats until a predefined 
number of generations have passed or certain criteria are met. 

There are many strands in the class of evolutionary algorithms, which are 
mostly population-based. However, most of them maintain a fairly common 
framework based on the survival of the fittest principle (see Algorithm 7.3). 
They differ in the choice of the so called genetic operators and in the imple- 
mentation of the algorithms. A common departure from the usual practice is to 
use mutation as the only genetic operator (see Algorithm 7.4). ED0 is different 
from EA in the following ways: 

1. The population size of EA is usually fixed, while ED0 maintains a variable- 
size population. Such a method allows the weaker entities that survive to 
the next iteration to wander to a better position, and hence they are free 
from being trapped by local suboptimal solutions. 

2. A variable mutation rate, realized by the diffusion step size, allows ED0 
to migrate smoothly between exploration and exploitation.  oreov over, most 
EAs give a high priority to making small changes rather than large changes. 
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Algorithm 7.3 A typical population-based evolutionary algorithm in which 
offspring entities are created through the recombination of parents. 

t = 0; 
Initialize population P ( ~ ) ;  
Evaluate population P ( ~ ) ;  
while the termination condition is not met do 

t + + ;  
Select parents P(t) from population P ( ~ ) ;  
Recombine parents P(t); 
Mutate parents P(t); 
Evaluate parents P(t) ; 
Generate new population P ( ~ )  based on parents P(t) and old population 
p(t) ; 

end while 

Algorithm 7.4 A typical mutation only evolutionary algorithm, such as evolu- 
tionary programming and evolution strategies. It should be noted that parame- 
ters controlling the mutation process is also encoded as some of the objects to 
be optimized by the evolutionary algorithm. As a result, self-adaptive behavior 
is obtained. 

t = 0; 
Initialize population P ( ~ ) ;  
Evaluate population P ( ~ ) ;  
while the termination condition is not met do 

t + + ;  
Generate P(t) through mutating population P ( ~ )  ; 
Evaluate P(t); 
Generate new population P ( ~ )  based on P(t) and old population P ( ~ ) ;  

end while 

The latter may be able to use fewer steps for searching if larger steps are 
possible. 

3. Selection in EA is a population-wide operation where all entities in the 
population are sorted according to their fitness. However, selection in ED0 
is entirely local, which compares only the performances of an entity and 
its parent. This local selection process is computationally less costly and 
offers a better chance for parallel implementation. 

4. The probability matrix in ED0 allows entities to capture the trend of the 
fitness landscape, and points a further search towards a potentially fruitful 
direction. This information is again local to an entity and shared only by 
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Algorithm 7.5 The particle swarm optimization (PSO) algorithm, which is 
similar to an evolutionary algorithm. The major difference is the way mutation 
is performed. While no control parameter is being optimized, the best solution 
so far is used as a reference point during the generation of the next candidate 
solution. 

t = 0; 
Initialize population ~ ( ~ 1 ;  
while the termination condition is not met do 

Evaluate population ~ ( ~ 1 ;  
Select the best particle(s) b(t) from population ~ ( ~ 1 ;  
Based on P ( ~ )  and b(t), generate new population P ( ~ )  through mutations; 
t++; 

end while 

an entity's offspring. In contrast, any trend in EA can be captured only by 
observing all entities in the population. 

5. The chance to reproduce and remain in the population decreases with the 
entity's fitness in the case of EA. In contrast, the notion of success is limited 
to the local sense in EDO. This allows a high diversity in the population. 
Random-move plays a stronger role in ED0 than in EA, as an instrument 
to escape from suboptimal solutions. 

7.7.2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is similar to ED0 in that individual par- 
ticles make their own local decisions without consulting any other particles 
except one [Kennedy, 19971. In more detail, individual particles require two 
pieces of information to make their decision regarding the next position to as- 
sume: the velocity (direction and speed) of the last move and that of the overall 
best particle. Therefore, some kind of global information is always required 
(see Algorithm 7.5). Although communications among entities of the same 
lineage are required in EDO, they do not depend on any global information. 

7.7.2.4 Ant Colony Optimization 

Ant colony optimization (ACO) is an optimization algorithm based on the 
principle of autocatalysis as learned from ants [Dorigo et al., 19961. A food 
foraging ant will lay a pheromone trail on its way home from a food source. 
Similarly, individual entities in ACO, when solving combinatorial optimiza- 
tion problems share information by building up the relative importance of in- 
dividual path segments incrementally (see Algorithm 7.6). Landscape trend 
information sharing in ED0 is explicit and local. This is achieved via the 
probability matrix, which is used and updated by all offspring of an entity. 
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Algorithm 7.6 The ant colony optimization (ACO) algorithm. The special 
feature of ACO is the presence of self-organized information (pheromone trail) 
shared among ants. 

t = 0; 
Initialize population P ( ~ ) ;  
Initialize trail R ( ~ )  ; 
while the termination condition is not met do 

Evaluate population P ( ~ ) ;  
Update trail ~ ( ~ 1 ;  
According to trail R ( ~ ) ,  construct new population P ( ~ ) ;  
Based on P ( ~ )  and local search, generate new population ~ ( ~ 1 ;  
t++; 

end while 

Algorithm 7.7 The cultural algorithm. A more elaborate information sharing 
scheme via belief updating is involved. 

Initialize population ~ ( ~ 1 ;  
Initialize belief B ( ~ ) ;  
while the termination condition is not met do 

Evaluate population ~ ( ~ 1 ;  
According to belief B ( ~ ) ,  vote on population ~ ( ~ 1 ;  
Adjust belief ~ ( ~ 1 ;  
Evolve population P ( ~ ) ,  while affecting belief ~ ( ~ 1 ;  
t + + ;  
Select new population P ( ~ )  from old population P ( ~ - ~ ) ;  

end while 

7.7.2.5 Cultural Algorithms 

Human beings pass experiences and knowledge to the next generation and 
beyond by means of culture [Reynolds, 19941. This form of knowledge sharing 
has been captured in the cultural algorithm (see Algorithm 7.7). ED0 also 
takes the view that knowledge gained by one entity is useful to others. As 
such, the direction of change is passed to others via the probability matrix, 
which is consumed by entities within the family. This is particularly useful in 
a population-based search algorithm, where many sites in the fitness landscape 
are being explored in parallel, as the direction information in on; site is usually 
irrelevant to another site. 
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7.8. Summary 
This chapter has presented an AOC-based method, called evolutionary diffu- 

sion optimization (EDO), for global optimization. From the previous chapters, 
we have seen that an AOC-based computational system usually involves a large 
number of distributed autonomous entities. Through local and nonlinear inter- 
actions among entities, the behavioral results of entities will be self-aggregated 
and consequently certain complex patterns or behaviors emerge. ED0 utilizes 
this mechanism and relates the resulting emergent complex patterns or behav- 
iors to the solutions to an optimization problem at hand. Hence, ED0 is well 
suited for solving the type of optimization problems that are characterized as 
being large-scale, highly distributed. 

7.8.1 Remarks on E D 0  
In EDO, each entity is equipped with the primitive behaviors to diffuse to its 

local neighborhood and reproduce. In addition, it can also choose to perform 
random-move behaviors. Decisions on the course of behaviors are made by an 
entity based on the common information shared with its parent and its siblings. 
The common information contains the likelihood estimates of finding a good 
solution in a certain direction, and is updated by every member of the family 
- reinforcing positively the good moves and negatively the bad moves. ED0 
also has a mechanism to adapt its step size during the search. 

The analysis of ED0 performance shows that it can maintain a high diversity 
in the population of entities throughout the search - a crucial feature to avoid 
premature convergence. 

Our experiments reveal that ED0 is able to automatically maintain a good 
balance between exploration and exploitation. This is made possible in ED0 
through probabilistically performing random-move behaviors that help main- 
tain the population diversity. At the same time, the ability to automatically 
adapt the search step size has been proven to be very useful. 

7.8.2 Remarks on AOC by Self-Discovery 
AOC-by-self-discovery is the same as AOC-by-prototyping except that the 

process of trial-and-error in AOC-by-self-discovery is automated (see Fig- 
ure 7.11). The automation of the prototyping process is achieved by having one 
autonomous entity to control or fine-tune the parameters of other autonomous 
entities. The ED0 example described in this chapter shows that AOC-by-self- 
discovery is a viable approach. The steps for engineering this kind of AOC 
algorithm are the same as those in Section 6.6.2 with the addition of one rule, 
that is, systems parameters are self-adapted according to some performance 
feedback. 
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Figure 7.11. The AOC-by-self-discovery approach. As compared to AOC-by-prototyping 
(see Figure 6.34), here the trial-and-error process, i.e., repeated fine-tune and compare steps, is 
automatically performed by the system (as symbolized by a computer sign in the figure). 
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Exercises 
7.1 Identify the following elements in EDO: 

(a) Stochastic behavior; 

(b) Shared knowledge; 

(c) Inter-entity communication; 

(d) Self-discovery. 

How would you improve them? 

7.2 List the major similarities and differences between ED0 and the algo- 
rithms mentioned in Section 7.7.2. 

7.3 Population-based search algorithms often face the risk of premature con- 
vergence. Is ED0 facing the same threat? Does ED0 have any mechanism 
to avoid premature convergence? Can that mechanism be improved? 

7.4 Growth in the population size is a potential problem in EDO. 

(a) Suggest ways to control the size globally; 

(b) Design a method to control the population within a proximity of a 
local optimal solution. 

7.5 As the global information in EDO, step size helps control how exploration 
is done. Is there any benefit in making the step size information local to 
an entity, or to a family tree? 

7.6 Fitness is a key measurement to direct a search algorithm. But in some 
situations, such as the blind 0-1 knapsack problem [Goldberg and Smith, 
19871, the fitness function is non-stationary. Modify ED0 to handle this 
new requirement. 

7.7 Modify the formulation of ED0 to tackle combinatorial optimization tasks, 
such as the traveling salesman problems [TSP, 20021. 

7.8 Multi-objective optimization problems [Eschenauer et al., 19861 deal with 
a set of optimization criteria instead of just one. Mathematically, F ( x )  in 
Equation 7.7 becomes: 

Modify ED0 to handle the m competing criteria. Read [Coello, 20021 and 
the references within it to get an idea on some GA-like methods. 



Chapter 8 

Challenges and Opportunities 

Technological advances have given birth to the Internet age, which has rev- 
olutionized the ways in which people interact and companies conduct their 
business. It also helps open our doors to new issues in large-scale scientific or 
social computing applications and how they can be developed. Just imagine 
the amount of data that a Mars exploratory robot or an Internet information 
spider needs to process. 

The availability of distributed computing resources adds new power to prob- 
lem solvers. The time is ripe to call for a new paradigm shift in ways of solving 
modern, complex problems. 

Drawing on the notion of autonomy oriented computing (AOC) as intro- 
duced in [Liu, 2001, Liu and Tsui, 20011, this book has laid down both theo- 
retical and engineering foundations for building highly distributed yet effective 
artificial complex systems. 

8.1. Lessons Learned 
We have provided, in Chapters 2 and 3, a general overview of the AOC 

modeling methodology. We have seen, in Part I1 of this book, some repre- 
sentative case studies on how to implement the general approaches to AOC. 
It is instructive to point out that the indiscernible ingredients of AOC problem 
solving include: 

rn A population of autonomous entities; 

rn A behavior model for the autonomous entities; 

A model of local interactions between entities and their environment; 

rn A definition of roles and responsibilities of the environment; 
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A set of criteria for measuring and self-organizing the nonlinear behavior 
of AOC problem solving. 

With the models and definitions in place, what remains is to let the system 
of autonomous entities to run and interact according to the models and observe 
its emergent behavior. It is worth underlining the main lessons learned from 
the cases studies described in Part 11. 

Autonomous behavior is local. The n-queen example described in 
Chapter 2 shows that primitive behaviors based on some limited amount of 
information observable from the limited range surroundings are sufficient for 
solving a global constraint problem. The implication is that we can save a 
lot of resources normally required by problem solvers adopting a centralized 
planner. 

Primitive behavior is neighbor-driven. Similarly, the image seg- 
mentation problem in Chapter 2 shows that controlling the direction of entity 
propagation can help nonlinearly amplify a desirable pixel labeling behavior 
and produce more entities of this locally successful entity type. The behavior 
of an autonomous entity does not need to be driven by some global information 
in order to produce a desirable global behavior. 

Autonomous behavior is self-directed. The Web foraging entities 
described in Chapter 6 have two measures associated with them: motivational 
support and interest profile. The values of these two measures directly affect 
how an entity picks its next move. 

Stochastic behavior is beneficial. All the AOC algorithms described 
in this book share a common feature - the presence of stochastic behavior. 
For example, the ERE model (Chapter 5) has a random-move behavior, which 
randomly chooses a new position (for n-queen problems) or a new variable 
value (for SAT problems). Similarly, the entity in ED0 (Chapter 7) has a 
choice to select a random-move behavior when it has not been making progress 
for some time. 

Stochastic behaviors enable an autonomous entity to get out of local min- 
ima. As a result, an AOC algorithm will have a better chance of locating a 
potentially better solution in the search space. 

Some behaviors can be self-reinforcing. Chapter 7 has illustrated 
the implementation of an AOC-by-self-discovery method. As discussed previ- 
ously, a search algorithm must find an appropriate step size in order to perform 
the search efficiently. However, a one-for-all step size is boun'd to err as the 
search landscape varies drastically among different sites. 
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The step size adaptation behavior is, therefore, implemented and it considers 
the degree of success in locating a locally better solution as an indication of 
whether a bigger or smaller step size is required. By including such a behavior 
adaptation strategy, one can take a lot of guess work away from the trial-and- 
error process that is normally required in an AOC-by-prototyping method. 

A means of separating the good from the poor solutions is 
required. Population explosion is probably one of the most troublesome 
problems in an AOC algorithm. While better solutions are always welcome 
and seen as stepping stones to an even better solution, it is not advisable to 
keep replicating them indiscriminately. ED0 in Chapter 7 has implemented 
a step function to grant different numbers of copies that entities with good 
performance can replicate themselves. On the other hand, those entities with 
poor performance are eliminated gradually. The image segmentation exam- 
ple in Chapter 2 and ED0 in Chapter 7 associate an age to every entity, and 
persistently unsuccessful entities will eventually reach their natural end. 

Exchange of information is important but can be minimal. 
While information sharing is crucial to the success of the ED0 algorithm, the 
amount of information flow can be minimal. In the presence of spatially dis- 
tributed computing resources, this feature becomes very important. 

Autonomous entities in ED0 limit their communications indirectly to those 
that share the same starting point (or parent). While the parent uses all the in- 
formation fed by its offspring entities to bias its choice of behavior, the entities 
communicate with their respective parent to obtain the current best solution. In 
other words, all the autonomous entities in the search space are affecting each 
other indirectly. 

Self-organization is the key to success. The centerpiece of an AOC 
algorithm is the notion of self-organization. When autonomous entities with 
self-directed behaviors are allowed to aggregate and react to the information 
and stimulation of other autonomous entities, a desired global behavior emerges 
as a result. 

For example, the Web foraging regularity modeling example presented in 
Chapter 6 models Web content distribution, the internal 'state of mind' of enti- 
ties, and their behavior, and is able to yield the scale-free behaviors that match 
observations in real life. The success in building a model with such an emer- 
gent behavior helps researchers explain Web surfing behavior. Similar com- 
plex systems modeling methods can be adopted in other studies, such as stock 
investor behavior or car driving behavior analysis. 

The above notes have highlighted some of the key elements to be built into 
an AOC system. They are certainly useful and have been demonstrated in the 



192 AUTONOMY ORIENTED COMPUTING 

previous chapters. Several areas remain to be extended in order to fully exploit 
the benefits of AOC. The remainder of this chapter sketches some directions, 
both theoretical and practical, for future research. 

8.2. Theoretical Challenges 
New approaches to systems dynamics and performance measurements are 

particularly needed so that clearer guidelines can be developed to help practi- 
tioners gain better insights into AOC, and AOC-by-self-discovery in particular. 
The measurements of emergence, evolvability, self-organization, tractability, 
and scalability in AOC are useful for tracking the progress of AOC. Theories 
on the formation of roles and social structures in a community of autonomous 
entities would expand the capability of an AOC system. 

The strength and weakness of AOC need to be assessed formally by com- 
paring with other multi-entity paradigms to establish clear insights into the 
benefits of AOC. Benchmark AOC problems should be identified for this pur- 
pose. 

8.3. Practical Challenges 
To foster and encourage the adoption of AOC for problem solving and com- 

plex systems modeling, more real-world applications as well as the characteri- 
zation of potential areas need to be identified. 

More guidelines and tools for developing AOC are needed so that people can 
readily benefit from this new computing paradigm. The requirements for simu- 
lation environments, languages, and data structures in AOC need to be studied 
so that a more efficient implementation of AOC can result. Other implemen- 
tation issues that need to be addressed include: architecture, visualization of 
activities, and the design of local and global nonlinear interaction rules. 

A few decisions that need to be made when implementing an autonomy ori- 
ented computing application. They include: hardware and software environ- 
ments, update schedule, management services, and visualization. This section 
discusses the relevancy of these issues to the AOC approaches. 

8.3.1 Hardware and Software Environments 
AOC usually involves more than one component in the system. These com- 

ponents include autonomous entities and static or dynamical environments. 
Implementing an AOC system in a single processor machine requires the sup- 
port of virtual parallelism. Modern operating systems and programming lan- 
guages support multi-thread technique. This allows slicing up CPU cycles and 
allocates them to the individual processes that represent components in the 
system. When multiple processors are available, individual components can 
be allocated to different processors on the same machine or across the network 
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of processors with the support of some facilities, such as parallel virtual ma- 
chine (PVM) [Geist et al., 1994, PVM, 19891 and message passing interface 
(MPI) [Snir et al., 1996, MPI, 19961. However, it requires a central control 
program to coordinate task allocation and result consolidation. This makes 
parallel implementation of, for example, genetic algorithms possible without 
requiring expensive parallel machines. 

With the popularity of peer-to-peer and grid computing networks, mobile 
entities can be sent to run on any machines over the Internet, provided that 
permission is granted by the host. Running simulated evolution in this way has 
been attempted [Smith and Taylor, 19981 and is a good starting point for those 
pursuing this line of research. 

8.3.2 Update Schedule 
An individual entity changes its state at each step based on its current state 

and its neighboring environment. In a synchronous update scenario, the current 
state of all individuals is frozen to allow all individuals to obtain state informa- 
tion and change states, if appropriate. The current state of the whole system 
is then updated and the system clock ticks, marking the beginning of the next 
step. In a parallel implementation, synchronization may become an overhead 
too big to handle. Alternatively, asynchronous updates that allow processes 
on each processor to proceed independently may be implemented. However, 
the choice of an update schedule and the choice of a hardware platform are 
related. If a multi-process hardware environment is chosen, synchronous up- 
dates would slow the simulation down as all processes have to start and stop at 
the same time. 

8.3.3 Management Services 
With the vast number of autonomous entities in an AOC system, AOC needs 

to keep track of the creation and deletion of objects. Moreover, a messaging 
mechanism is needed to facilitate message passing between objects. A cen- 
tral clock is also required to help the autonomous entities manage their state 
updates, no matter if it is synchronous or asynchronous. Some centralized 
whiteboards may also be needed if the autonomous entities are to share infor- 
mation in an implicit way and to contain a global view of the system's status. 
The whiteboards may also be used to simulate a dynamical environment in 
such systems as the ant system [Dorigo et al., 19961. 

8.3.4 Visualization 
Visualization is a good way for people running simulations to 'see' what is 

going on with the experiment. Items of interest that are related to individual 
autonomous entities include actual movements, states, actions taken, fitness, 
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ages, etc. 'On the other hand, some global information (such as population 
size, best fitness, and average fitness) and some progress measurements (such 
as measurements of emergence, evolvability, diversity, and convergence) are 
also of interest to modelers. The visual display of such information will be of 
tremendous help to modelers to obtain a quick view of the system. 

8.4. Summary 
We have presented in this book a new computing paradigm, called auton- 

omy oriented computing (AOC), based on the notions of autonomy and self- 
organization in entities. AOC is intended to meet the demands of real-world 
computing that is naturally embodied in large-scale, highly distributed, locally 
interacting entities, as in sensor networks, grid computing, and amorphous 
computing. Nevertheless, as we have demonstrated through examples, AOC 
is also applicable to tackling conventional computing problems. 

In this book, we have highlighted the most fundamental issues central to the 
design, formulation, and implementation of an AOC system. To recap, AOC 
has three general approaches with different objectives: 

1. AOC-by-fabrication is similar to construction with a blueprint, where some 
more or less known complex systems phenomena are abstracted and repli- 
cated in problem solving or system modeling. 

2. AOC-by-prototyping represents a trial-and-error approach to finding expla- 
nations to some complex behavior observations via autonomy oriented sys- 
tems prototyping. Human involvement is sometimes intensive to fine-tune 
systems parameters. 

3. AOC-by-self-discovery, on the other hand, is an autonomous problem solv- 
ing approach that can fine-tune its own settings to suit the problem at hand. 
It requires less human intervention than AOC-by-prototyping, but repre- 
sents the highest degree of uncertainty, as it is difficult to predict when the 
system will stop. 

The advantages of using AOC to solve hard computational problems or to 
model complex systems behavior are apparent as we have mentioned at the 
beginning of this book (i.e., in Preface). By providing detailed methodolo- 
gies and case studies, we hope to lay down the foundations for future AOC 
development, and at the same time, to stimulate general interests in this newly 
emerged, exciting computing field. 
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Exercises 
8.1 Based on your understanding of AOC, review and summarize the key steps 

of using AOC in problem solving or complex systems modeling. 

8.2 Based on your understanding of AOC, identify and explain: 

(a) What are the advantages and disadvantages of AOC? 

(b) What problem domains is AOC specially suitable for? What domains 
is it not? 

8.3 From an engineering point of view, think and design a dedicated platform 
or programming language for AOC. 
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